Skip to main content
Log in

Effect of an active β-nucleating agent on the crystallization behavior of polypropylene random copolymer

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

There are few commercially available β-nucleating agents (β-NAs) that can induce Polypropylene random copolymer (PPR) to produce large amounts of β-crystals at present. In this work, we discover that the Zinc Suberate (ZnSA) can effectively induce the formation of β-crystals for PPR and the relative β-crystals content (Kβ) can reach 0.82 when 0.2wt% ZnSA is added. The incorporation of ZnSA significantly decrease the size of spherulite and increase the crystallization rate, which are revealed by polarized optical microscopy (POM) images. Then, the effects of ZnSA on the isothermal and non-isothermal crystallization behavior of PPR at ultra-fast cooling rates and heating rates were investigated by Flash-DSC. Through the isothermal crystallization process, a bimodal relationship between the peak crystallization time and temperature was obtained. When the isothermal crystallization temperature is higher than 36 °C, ZnSA significantly increases the crystallization rate of PPR. According to the non-isothermal crystallization, we discover that the addition of ZnSA inhibits the formation of mesophase and the low cooling rate (< 10 °C·s−1) is more beneficial for the formation of β-crystals for PPR. In addition, β-crystals are not suitable to be characterized by rapid heating rate (> 300 °C·s−1) because β-crystals and α-crystals are not distinguished at rapid heating rate. This work is beneficial for deeply understanding the influence of β-NAs on crystallization behavior of PPR and providing guidance for the optimization of industrial production processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme. 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Zhang YF, Mao JJ (2019) Effect of chemical structure of hydrazide compounds on nucleation effect in isotactic polypropylene. J Polym Res 26(12). https://doi.org/10.1007/s10965-019-1970-7

  2. Wang X, Yin X, Wang L, Zhang C, Gong W, He L (2016) Dynamic mechanical properties, crystallization behaviors, and low-temperature performance of polypropylene random copolymer composites. J Appl Polym Sci 133(6). https://doi.org/10.1002/app.42960

  3. Jia E, Shangguan Y, Xiong J, Chen F, Zheng Q (2018) Fabrication of polypropylene blends with excellent low-temperature toughness and balanced toughness-rigidity by a combination of EPR and SEEPS. J Appl Polym Sci 135(3). https://doi.org/10.1002/app.45714

  4. Sw V, Jena KK, Halique K, Alhassan SM (2020) Enhanced Mechanical Toughness of Isotactic Polypropylene Using Bulk Molybdenum Disulfide. ACS Omega 5(20):11394–11401. https://doi.org/10.1021/acsomega.0c00419

    Article  CAS  Google Scholar 

  5. Shi S, Liu Y, Nie M, Wang Q (2019) Nacre-Mimetic Polypropylene Featuring Heterogeneous Distribution of Polymorphic Compositions via Controlled Diffusion of β-Nucleating Agent. Ind Eng Chem Res 58(10):4116–4124. https://doi.org/10.1021/acs.iecr.8b06244

    Article  CAS  Google Scholar 

  6. Chen Y-H, Mao Y-M, Li Z-M, Hsiao BS (2010) Competitive Growth of α- and β-Crystals in β-Nucleated Isotactic Polypropylene under Shear Flow. Macromolecules 43(16):6760–6771. https://doi.org/10.1021/ma101006e

    Article  CAS  Google Scholar 

  7. Ruan C, Lv Y (2019) A note for probabilistic model of polymer crystallization in temperature gradients. Crystals 9(10). https://doi.org/10.3390/cryst9100538

  8. Chen L, Yang Y, Xin Z, Qin W, Zhou S, Zhao S (2019) Increased nucleation efficiency of an in situ–formed β-nucleating agent for impact polypropylene copolymer. J Polym Res 26(10). https://doi.org/10.1007/s10965-019-1908-0

  9. Luo F, Wang J, Bai H, Wang K, Deng H, Zhang Q, Chen F, Fu Q, Na B (2011) Synergistic toughening of polypropylene random copolymer at low temperature: β-Modification and annealing. Mater Sci Eng A 528(22–23):7052–7059. https://doi.org/10.1016/j.msea.2011.05.030

    Article  CAS  Google Scholar 

  10. Luo F, Zhu Y, Wang K, Deng H, Chen F, Zhang Q, Fu Q (2012) Enhancement of β-nucleated crystallization in polypropylene random copolymer via adding isotactic polypropylene. Polymer 53(21):4861–4870

    Article  CAS  Google Scholar 

  11. Zhang Z, Wang C, Zhang J, Mai K (2012) The β-nucleation of polypropylene random copolymer filled by nano-CaCO 3 supported β-nucleating agent. J Therm Anal Calorim 109(3):1587–1596

    Article  CAS  Google Scholar 

  12. Mohamed MG, Kuo SW (2019) Functional Silica and Carbon Nanocomposites Based on Polybenzoxazines. Macromol Chem Phys 220(1). https://doi.org/10.1002/macp.201800306

  13. Mohamed MG, Atayde EC, Matsagar BM, Na J, Yamauchi Y, Wu KCW, Kuo S-W (2020) Construction Hierarchically Mesoporous/Microporous Materials Based on Block Copolymer and Covalent Organic Framework. J Taiwan Inst Chem Eng 112:180–192. https://doi.org/10.1016/j.jtice.2020.06.013

    Article  CAS  Google Scholar 

  14. Zhang X, Zhao S, Mohamed MG, Kuo S-W, Xin Z (2020) Crystallization behaviors of poly(ethylene terephthalate) (PET) with monosilane isobutyl-polyhedral oligomeric silsesquioxanes (POSS). J Mater Sci 55(29):14642–14655. https://doi.org/10.1007/s10853-020-05003-9

    Article  CAS  Google Scholar 

  15. Pan C, Qin W, Chen L, Xin Z, Zhao S, Ye C (2018) A novel β-nucleating agent for isotactic polypropylene. J Therm Anal Calorim 134(3):2029–2040. https://doi.org/10.1007/s10973-018-7768-8

    Article  CAS  Google Scholar 

  16. Sun Y, Zhao S, Zhang X, Tong C, Qin W, Xin Z (2020) Structural Relationships between Zinc Hexahydrophthalate and the β Phase of Isotactic Polypropylene. Ind Eng Chem Res 59(41):18529–18538. https://doi.org/10.1021/acs.iecr.0c03366

    Article  CAS  Google Scholar 

  17. Yang Y, Xin Z, Zhao S, Shi Y, Zhou S, Zhou J, Ye C (2017) Nucleation effects of zinc adipate as β-Nucleating agent in ethylene-propylene block copolymerized polypropylene. J Polym Res 24(9). https://doi.org/10.1007/s10965-017-1300-x

  18. Li J, Cheung W (1997) Pimelic acid-based nucleating agents for hexagonal crystalline polypropylene. J Vinyl Add Tech 3(2):151–156

    Article  CAS  Google Scholar 

  19. Varga J, Mudra I, Ehrenstein G (1999) Crystallization and melting of β-nucleated isotactic polypropylene. J Therm Anal Calorim 56(3):1047–1057

    Article  CAS  Google Scholar 

  20. Varga J, Mudra I, Ehrenstein GW (1999) Highly active thermally stable β-nucleating agents for isotactic polypropylene. J Appl Polym Sci 74(10):2357–2368

    Article  CAS  Google Scholar 

  21. Menyhárd A, Varga J, Molnár G (2006) Comparison of different-nucleators for isotactic polypropylene, characterisation by DSC and temperature-modulated DSC (TMDSC) measurements. J Therm Anal Calorim 83(3):625–630

    Article  Google Scholar 

  22. Zhao S, Cai Z, Xin Z (2008) A highly active novel β-nucleating agent for isotactic polypropylene. Polymer 49(11):2745–2754. https://doi.org/10.1016/j.polymer.2008.04.012

    Article  CAS  Google Scholar 

  23. Zhao S, Qin W, Xin Z, Zhou S, Gong H, Ni Y, Zhang K (2018) In situ generation of a self-dispersed β-nucleating agent with increased nucleation efficiency in isotactic polypropylene. Polymer 151:84–91

    Article  CAS  Google Scholar 

  24. Qin W, Xin Z, Pan CM, Sun SB, Jiang XF, Zhao SC (2019) In situ formation of zinc phthalate as a highly dispersed beta-nucleating agent for mechanically strengthened isotactic polypropylene. Chem Eng J 358:1243–1252. https://doi.org/10.1016/j.cej.2018.10.108

    Article  CAS  Google Scholar 

  25. Mathot V, Pyda M, Pijpers T, Vanden Poel G, van de Kerkhof E, van Herwaarden S, van Herwaarden F, Leenaers A (2011) The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): First findings on polymers. Thermochim Acta 522(1–2):36–45. https://doi.org/10.1016/j.tca.2011.02.031

    Article  CAS  Google Scholar 

  26. Mollova A, Androsch R, Mileva D, Gahleitner M, Funari SS (2013) Crystallization of isotactic polypropylene containing beta-phase nucleating agent at rapid cooling. Eur Polymer J 49(5):1057–1065. https://doi.org/10.1016/j.eurpolymj.2013.01.015

    Article  CAS  Google Scholar 

  27. Schawe JEK (2015) Analysis of non-isothermal crystallization during cooling and reorganization during heating of isotactic polypropylene by fast scanning DSC. Thermochim Acta 603:85–93. https://doi.org/10.1016/j.tca.2014.11.006

    Article  CAS  Google Scholar 

  28. Yang R, Ding L, Chen W, Chen L, Zhang X, Li J (2017) Chain Folding in Main-Chain Liquid Crystalline Polyester with Strong π–π Interaction: An Efficient β-Nucleating Agent for Isotactic Polypropylene. Macromolecules 50(4):1610–1617. https://doi.org/10.1021/acs.macromol.6b02521

    Article  CAS  Google Scholar 

  29. Cai J, Luo R, Lv R, He Y, Zhou D, Hu W (2017) Crystallization kinetics of ethylene-co-propylene rubber/isotactic polypropylene blend investigated via chip-calorimeter measurement. Eur Polymer J 96:79–86. https://doi.org/10.1016/j.eurpolymj.2017.09.003

    Article  CAS  Google Scholar 

  30. Huo H, Jiang S, An L, Feng J (2004) Influence of shear on crystallization behavior of the β phase in isotactic polypropylene with β-nucleating agent. Macromolecules 37(7):2478–2483

    Article  CAS  Google Scholar 

  31. Jones AT, Aizlewood JM, Beckett D (1964) Crystalline forms of isotactic polypropylene. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics 75(1):134–158

    Article  Google Scholar 

  32. Zhu Q, Meng YZ, Tjong SC, Zhang YM, Wan W (2003) Catalytic synthesis and characterization of an alternating copolymer from carbon dioxide and propylene oxide using zinc pimelate. Polym Int 52(5):799–804. https://doi.org/10.1002/pi.1157

    Article  CAS  Google Scholar 

  33. Qin W, Liu K, Xin Z, Ling H, Zhou S, Zhao S (2020) Zinc pimelate as an effective β‐nucleating agent for isotactic polypropylene at elevated pressures and under rapid cooling rates. Polym Crystallization 3 (3). https://doi.org/10.1002/pcr2.10132

  34. Nagendra B, Rosely C, Leuteritz A, Reuter U, Gowd EB (2017) Polypropylene/Layered Double Hydroxide Nanocomposites: Influence of LDH Intralayer Metal Constituents on the Properties of Polypropylene. ACS Omega 2(1):20–31

    Article  CAS  Google Scholar 

  35. Schick C, Mathot V (2016) Fast Scanning Calorimetry. Springer International Publishing. https://doi.org/10.1007/978-3-319-31329-0

    Article  Google Scholar 

  36. Zhang X, Zhao S, Kuo SW, Chen WC, Mohamed MG, Xin Z (2021) An effective nucleating agent for isotactic polypropylene (iPP): Zinc bis- (nadic anhydride) double-decker silsesquioxanes. Polymer 220. https://doi.org/10.1016/j.polymer.2021.123574

  37. Somani RH, Hsiao BS, Nogales A, Fruitwala H, Srinivas S, Tsou AH (2001) Structure development during shear flow induced crystallization of i-PP: in situ wide-angle X-ray diffraction study. Macromolecules 34(17):5902–5909

    Article  CAS  Google Scholar 

  38. Schawe JEK, Budde F, Alig I (2018) Nucleation activity at high supercooling: Sorbitol-type nucleating agents in polypropylene. Polymer 153:587–596. https://doi.org/10.1016/j.polymer.2018.08.054

    Article  CAS  Google Scholar 

  39. Paolucci F, Baeten D, Roozemond PC, Goderis B, Peters GWM (2018) Quantification of isothermal crystallization of polyamide 12: Modelling of crystallization kinetics and phase composition. Polymer 155:187–198. https://doi.org/10.1016/j.polymer.2018.09.037

    Article  CAS  Google Scholar 

  40. Toda A, Androsch R, Schick C (2016) Insights into polymer crystallization and melting from fast scanning chip calorimetry. Polymer 91:239–263. https://doi.org/10.1016/j.polymer.2016.03.038

    Article  CAS  Google Scholar 

  41. Wang L, Okada K, Sodenaga M, Hikima Y, Ohshima M, Sekiguchi T, Yano H (2018) Effect of surface modification on the dispersion, rheological behavior, crystallization kinetics, and foaming ability of polypropylene/cellulose nanofiber nanocomposites. Compos Sci Technol 168:412–419. https://doi.org/10.1016/j.compscitech.2018.10.023

    Article  CAS  Google Scholar 

  42. Yue Y, Yi J, Wang L, Feng J (2020) Toward a More Comprehensive Understanding on the Structure Evolution and Assembly Formation of a Bisamide Nucleating Agent in Polypropylene Melt. Macromolecules. https://doi.org/10.1021/acs.macromol.0c00019

    Article  Google Scholar 

  43. Gao H, Wang J, Schick C, Toda A, Zhou D, Hu W (2014) Combining fast-scan chip-calorimeter with molecular simulations to investigate superheating behaviors of lamellar polymer crystals. Polymer 55(16):4307–4312. https://doi.org/10.1016/j.polymer.2014.06.048

    Article  CAS  Google Scholar 

  44. Crissman JM (1969) Mechanical relaxation in polypropylene as a function of polymorphism and degree of lamella orientation. Journal of Polymer Science Part A-2 Polymer Physics 7 (2):389–404

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of this work by National Natural Science Foundation of China (Grants 21878089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shicheng Zhao.

Ethics declarations

Competing interests

The authors declared that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Tang, F., Lv, W. et al. Effect of an active β-nucleating agent on the crystallization behavior of polypropylene random copolymer. J Polym Res 29, 4 (2022). https://doi.org/10.1007/s10965-021-02797-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02797-3

Keywords

Navigation