Skip to main content
Log in

Development novel eco-friendly proton exchange membranes doped with nano sulfated zirconia for direct methanol fuel cells

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The proton exchange membrane is the main component of direct methanol fuel cells (DMFCs). It has binary function of separating oxidant and fuels, besides transporting protons. In this study, a binary polymer blend is formulated from inexpensive and ecofriendly polymers, such as iota carrageenan (IC) and poly vinyl alcohol (PVA). Super acidic sulfated zirconia (SO4ZrO2) was synthesized from an one pot, solvent free and simple calcination method and later embedded as a doping agent into the polymeric matrix with a percentage of 1–7.5 wt. %. The membranes formed were characterized by FTIR, TGA, DSC and XRD. The results revealed that, the oxidative stability and mechanical properties were enhanced with increasing doping addition due to an increase in numbers of hydrogen bonds formed between the polymers functional groups and oxygen functional groups of SO4 ZrO2. In addition to, the membrane with doping ratio of 7.5 wt. % of SO4 ZrO2 achieved methanol permeability of 1.95 × 10–7 cm2 s−1 which much less than Nafion 117 ( 14.1 × 10–7 cm2 s−1) and ionic conductivity of 22.3 mS cm−1 which is close to Nafion 117 (34 mS cm−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yuan C, Wang Y (2020) Synthesis and characterization of a crosslinked membrane based on sulfonated poly(aryl ether sulfone) and sulfonated polyvinyl alcohol applied in direct methanol fuel cells. J Polym Res 27:329. https://doi.org/10.1007/s10965-020-02305-z

    Article  CAS  Google Scholar 

  2. Beydaghi H, Javanbakht M, Salarizadeh P, Bagheri A, Amoozadeh A (2017) Novel proton exchange membrane nanocomposites based on sulfonated tungsten trioxide for application in direct methanol fuel cells. Polymer 119:253–262

    Article  CAS  Google Scholar 

  3. Zhiwei W, Hao Z, Qiang C, Sumei Z, Feng Y, Jian K, Jinyao C, Ya C, Ming X (2019) Preparation and characterization of PVA proton exchange membranes containing phosphonic acid groups for direct methanol fuel cell applications. J Polym Res 26:200. https://doi.org/10.1007/s10965-019-1855-9

    Article  CAS  Google Scholar 

  4. Pandey RP, Shukla G, Manohar M, Shahi VK (2017) Graphene oxide based nanohybrid proton exchange membranes for fuel cell applications: An overview. Adv Colloid Interface Sci 240:15–30

    Article  CAS  Google Scholar 

  5. Ye YS, Rick J, Hwang BJ (2012) Water soluble polymers as proton exchange membranes for fuel cells. Polymers 4:913–963

    Article  CAS  Google Scholar 

  6. Ma J, Choudhury NA, Sahai Y (2020) A comprehensive review of direct borohydride fuel cells. Renewable and Sustainable Energy Rev 14:183–199

    Article  Google Scholar 

  7. Merino-Jiménez I, León CP, Shah AA, Walsh FC (2012) Developments in direct borohydride fuel cells and remaining challenges. J Power Sources 219:339–357

    Article  Google Scholar 

  8. Gouda MH, Elnouby M, Aziz AN, Youssef ME, Santos DMF, Elessawy NA (2020) Green and Low-Cost Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells: Effect of Double-Layer Electrodes and Gas Diffusion Layer. Front Mater 6

  9. Pourzare K, Mansourpanah Y, Farhadi S (2016) Advanced nanocomposite membranes for fuel cell applications: a comprehensive review. Biofuel Res J 12: 496–513

  10. Bakangura E, Wu L, Ge L, Yang Z, Xu T (2016) Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives. Prog Polym Sci 57:103–152

    Article  CAS  Google Scholar 

  11. Wei Q, Zhang Y, Wang Y, Chai W, Yang M (2016) Measurement and modeling of the effect of composition ratios on the properties of poly(vinyl alcohol)/poly(vinyl pyrrolidone) membranes. Mater Des 103:249–258

    Article  CAS  Google Scholar 

  12. Maarouf S, Tazi B, Guenoun F (2017) Preparation and characterization of new composite membranes containing polyvinylpyrrolidone, polyvinyl alcohol, sulfosuccinic acid, silicotungstic acid and silica for direct methanol fuel cell applications. J Mater Environ Sci 8:2870–2876

    CAS  Google Scholar 

  13. Pintauro P (2015) Perspectives on Membranes and Separators for Electrochemical Energy Conversion and Storage Devices. Polym Rev 55:201–217

    Article  CAS  Google Scholar 

  14. Chen J, Li Y, Zhang Y, ZhuY (2015) Preparation and characterization of graphene oxide reinforced PVA film with boric acid as crosslinker. J Appl Polym Sci 132:1–8

  15. Ye YS, Cheng MY, Xie XL, Rick J, Huang YJ, Chang FC, Hwang BJ (2013) Alkali doped polyvinyl alcohol/graphene electrolyte for direct methanol alkaline fuel cells. J Power Sources 239:424–432

    Article  CAS  Google Scholar 

  16. Gouda MH, Konsowa AH, Farag HA, Elessawy NA, Tamer TM, Mohy Eldin MS (2020) Novel nanocomposite membranes based on cross-linked eco-friendly polymers doped with sulfated titania nanotubes for direct methanol fuel cell application." Nanomater Nanotechnol 10:1–9

  17. Mohy Eldin MS, Farag HA, Tamer TM, Konsowa AH, Gouda MH (2020) Development of novel iota carrageenan-g-polyvinyl alcohol polyelectrolyte membranes for direct methanol fuel cell application. Polym Bullet 77(9):4895–4916

  18. Karthikeyan S, Selvasekarapandian S, Premalatha M, Monisha S, Boopathi G, Aristatil G, Arun A, Madeswaran S (2016) Proton-conducting I-Carrageenan-based biopolymer electrolyte for fuel cell application. Ionics 23:2775–2780

    Article  Google Scholar 

  19. Sedesheva YS, Ivanov VS, Wozniak AI, Yegorov AS (2016) Proton-exchange membranes based on sulfonated polymers. Orient J Chem 32:2283–2296

    Article  CAS  Google Scholar 

  20. Awang N, Ismail AF, Jaafar J, Matsuura T, Junoh H, Othman MHD, Rahman MA (2015) Functionalization of polymeric materials as a high performance membrane for direct methanol fuel cell: A review. React Funct Polym 86:248–258

    Article  CAS  Google Scholar 

  21. Sacca A, Gatto I, Carbone A, Pedicini R, Passalacqua E (2006) ZrO2–Nafion composite membranes for polymer electrolyte fuel cells (PEFCs) at intermediate temperature. J Power Sources 163:47–51

    Article  CAS  Google Scholar 

  22. D’Epifanio A, Navarra MA, Weise FC, Mecheri B, Farrington J, Licoccia S, Greenbaum S (2009) Composite Nafion/Sulfated Zirconia Membranes: Effect of the Filler Surface Properties on Proton Transport Characteristics. Chem Mater 22:813–821

    Article  Google Scholar 

  23. Giffin GA, Piga M, Lavina S, Navarra MA, D’Epifanio A, Scrosati B, Di Noto V (2012) Characterization of sulfated-zirconia/Nafion® composite membranes for proton exchange membrane fuel cells. J Power Sources 198:66–75

    Article  CAS  Google Scholar 

  24. Navarra M, Abbati C, Scrosati B (2008) Properties and fuel cell performance of a Nafion-based, sulfated zirconia-added, composite membrane. J Power Sources 183:109–113

    Article  CAS  Google Scholar 

  25. Ren S, Sun G, Li C, Song S, Xin Q, Yang X (2006) Sulfated zirconia–Nafion composite membranes for higher temperature direct methanol fuel cells. J Power Sources 157:724–726

    Article  CAS  Google Scholar 

  26. Tominaka S, Momma T, Scrosati B, Osaka T (2010) Sulfated zirconia as a proton conductor for fuel cells: Stability to hydrolysis and influence on catalysts. J Power Sources 195:4065–4071

    Article  CAS  Google Scholar 

  27. Zhai Y, Zhang H, Hu J, Yi B (2006) Preparation and characterization of sulfated zirconia (SO42−/ZrO2)/ Nafion composite membranes for PEMFC operation at high temperature/low humidity. J Membr Sci 280:148–155

    Article  CAS  Google Scholar 

  28. Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, Deshmukh RR, Pasha SKK, AlMaadeed MA, Chidambaram K (2016) Graphene oxide reinforced polyvinyl alcohol/polyethylene glycol blend composites as high-performance dielectric material. J Polym Res 23:1–13

    Article  CAS  Google Scholar 

  29. Li C, Xiao L, Jiang Z, Tian X, Luo L, Liu W, Xu ZL, Yang H, Jiang ZJ (2017) Sulfonic acid functionalized graphene oxide paper sandwiched in sulfonated poly(ether ether ketone): A proton exchange membrane with high performance for semi-passive direct methanol fuel cells. Int J Hydrogen Energy 42:16731–16740

    Article  CAS  Google Scholar 

  30. Sun Y, Ma S, Du Y, Yuan L, Wang S, Yang J, Deng F, Xiao F (2005) Solvent-Free Preparation of Nanosized Sulfated Zirconia with Brønsted Acidic Sites from a Simple Calcination. J Phys Chem B 109(2005):2567–2572

    Article  CAS  Google Scholar 

  31. Gouda MH, Gouveia W, Elessawy NA, Šljukić B, Nassr ABAA, Santos DMF (2020) Simple design of PVA-based blend doped with SO4(PO4)-functionalised TiO2 as an effective membrane for direct borohydride fuel cells.” Intern J Hydro Energy 45(30):15226–15238

  32. Gouda MH, Gouveia W, Afonso ML, Šljukić B, Elessawy NA, Santos DMF (2019) Novel Ternary Polymer Blend Membranes Doped with SO4/PO4-TiO2 for Low Temperature Fuel Cells”, Proceedings of the 5th World Congress on Mechanical, Chemical, and Material Engineering (MCM'19). Paper No. ICCPE 106, Lisbon, Portugal. https://doi.org/10.11159/iccpe19.106

  33. Gouda MH, Gouveia W, Afonso ML, Šljukić B, El Essawy NA, Nassr ABAA, Santos DMF (2019) Poly(vinyl alcohol)-based crosslinked ternary polymer blend doped with sulfonated graphene oxide as a sustainable composite membrane for direct borohydride fuel cells.” J Power Source 432:92–101

  34. Gouda MH, Elessawy NA, Santos DMF (2020) Synthesis and Characterization of Novel Green Hybrid Nanocomposites for Application as Proton Exchange Membranes in Direct Borohydride Fuel Cells.” Energies 13:1180

  35. Parnian MJ, Rowshanzamir S, Moghaddam JA (2018) Investigation of physicochemical and electrochemical properties of recast Nafion nanocomposite membranes using different loading of zirconia nanoparticles for proton exchange membrane fuel cell applications. Mater Sci Energy Technol 1:146–154

    Article  Google Scholar 

  36. Yu X, Qiang L (2012) Preparation for graphite materials and study on electrochemical degradation of phenol by graphite cathodes. Adv Mater Phys Chem 2:63–68

    Article  CAS  Google Scholar 

  37. Mossayebi Z, Parnian MJ, Rowshanzamir S (2018) Effect of the Sulfated Zirconia Nanostructure Characteristics on Physicochemical and Electrochemical Properties of SPEEK Nanocomposite Membranes for PEM Fuel Cell Applications. Macromol Mater Eng 303:1700570

    Article  Google Scholar 

  38. Kowsari E, Zare A, Ansari V (2015) Phosphoric acid-doped ionic liquid-functionalized graphene oxide/sulfonated polyimide composites as proton exchange membrane. Int J Hydrogen Energy 40:13964–13978

    Article  CAS  Google Scholar 

  39. Bayer T, Cunning BV, Selyanchyn R, Daio T, Nishihara M, Fujikawa S, Sasaki K, Lyth SM (2016) Alkaline anion exchange membranes based on KOH-treated multilayer graphene oxide. J Membr Sci 508:51–61

    Article  CAS  Google Scholar 

  40. Pandey R, Shahi V (2015) Sulphonated imidized graphene oxide (SIGO) based polymer electrolyte membrane for improved water retention, stability and proton conductivity. J Power Sources 299:104–113

    Article  CAS  Google Scholar 

  41. Shirdast A, Sharif A, Abdollahi M (2016) Effect of the incorporation of sulfonated chitosan/sulfonated graphene oxide on the proton conductivity of chitosan membranes. J Power Sources 306:541–551

    Article  CAS  Google Scholar 

  42. Beydaghi H, Javanbakht M, Kowsari E (2014) Synthesis and Characterization of Poly(vinyl alcohol)/Sulfonated Graphene Oxide Nanocomposite Membranes for Use in Proton Exchange Membrane Fuel Cells (PEMFCs). Ind Eng Chem Res 53:16621–16632

    Article  CAS  Google Scholar 

  43. Qiu X, Dong T, Ueda M, Zhang X, Wang L (2017) Sulfonated reduced graphene oxide as a conductive layer in sulfonated poly(ether ether ketone) nanocomposite membranes. J Membr Sci 524:663–672

    Article  CAS  Google Scholar 

  44. Cheng T, Feng M, Huang Y, Liu X (2017) SGO/SPEN-based highly selective polymer electrolyte membranes for direct methanol fuel cells. Ionics 23:2143–2152

    Article  CAS  Google Scholar 

  45. Luo T, Xu H, Li Z, Gao S, Fang Z, Zhang Z, Wang F, Ma B, Zhu C (2017) Novel proton conducting membranes based on copolymers containing hydroxylated poly(ether ether ketone) and sulfonated polystyrenes. J Appl Polym Sci 134:1–8

    Google Scholar 

  46. Jana K, Thakur A, Shahi V, Avasthi D, Rana D, Maiti P (2015) A poly(vinylidene fluoride-co-hexafluoro propylene) nanohybrid membrane using swift heavy ion irradiation for fuel cell applications. J Mater Chem A 3:10413–10424

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the support from the City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Noha A. Elessawy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouda, M.H., Konsowa, A.H., Farag, H.A. et al. Development novel eco-friendly proton exchange membranes doped with nano sulfated zirconia for direct methanol fuel cells. J Polym Res 28, 263 (2021). https://doi.org/10.1007/s10965-021-02628-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02628-5

Keywords

Navigation