Skip to main content
Log in

CoFe2O4@methylcellulose synthesized as a new magnetic nanocomposite to tetracycline adsorption: modeling, analysis, and optimization by response surface methodology

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, CoFe2O4@methycellulose (MC) was prepared as a novel magnetic nanocomposite by a facile, fast, and new microwave-assisted method using iron and cobalt salts in the presence of MC as a green biopolymer in alkaline medium and was then structurally evaluated by FESEM, EDS, Mapping, BET, VSM, XRD, TGA, and FTIR. Effective parameters on tetracycline (TC) removal such as pH, initial TC concentration, adsorbent dosage, and contact time were examined. The central composite design (CCD)–based response surface methodology (RSM) was employed to design the experiments and find optimal conditions. CoFe2O4@MC was synthesized with the particle size of about 50 nm, magnetic properties, and high specific surface area. The maximum TC adsorption efficiencies using CoFe2O4@MC from synthetic and real wastewater samples under optimal conditions were 79.45% and 74.85%, respectively. The data of TC adsorption on CoFe2O4@MC were fitted well with pseudo–second order kinetic and Langmuir isotherm models. The results of thermodynamic data indicated the exothermic and spontaneous nature of TC adsorption process using CoFe2O4@MC. CoFe2O4@MC showed high efficiency and chemical stability after 5 runs. Therefore, CoFe2O4@MC nanocomposite can be applied as a good and practical adsorbent for removing TC from synthetic and real wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ll Yu, Cao W, Wu SC, Yang C, Cheng Jh (2018) Removal of tetracycline from aqueous solution by MOF/graphite oxide pellets: Preparation, characteristic, adsorption performance and mechanism. Ecotoxicol Environ Saf 164:289–296. https://doi.org/10.1016/j.ecoenv.2018.07.110

    Article  CAS  Google Scholar 

  2. Zhang Z, Ding C, Li Y, Ke H, Cheng G (2020) Efficient removal of tetracycline hydrochloride from aqueous solution by mesoporous cage MOF-818. SN Applied Sciences 2(4):1–11. https://doi.org/10.1007/s42452-020-2514-9

    Article  CAS  Google Scholar 

  3. Mahdizadeh H, Nasiri A, Gharaghani M, Yazdanpanah G (2020) Hybrid UV/COP advanced oxidation process using ZnO as a catalyst immobilized on a stone surface for degradation of acid red 18 dye. MethodsX 7:101118. https://doi.org/10.1016/j.mex.2020.101118

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rajabizadeh K, Yazdanpanah G, Dowlatshahi S, Malakootian M (2020) Photooxidation Process Efficiency (UV/O3) for P-nitroaniline Removal from Aqueous Solutions Ozone: Sci Eng 42(5):420–427, https://doi.org/10.1080/01919512.2019.1679614

  5. Dehghani M, Nozari M, Fakhraei Fard A, Ansari Shiri M, Shamsedini N (2019) Direct red 81 adsorption on iron filings from aqueous solutions; kinetic and isotherm studies. Environ Technol 40(13):1705–1713. https://doi.org/10.1080/09593330.2018.1428228

    Article  CAS  PubMed  Google Scholar 

  6. Dehghani M, Ansari Shiri M, Shahsavani S, Shamsedini N, Nozari M (2017) Removal of Direct Red 81 dye from aqueous solution using neutral soil containing copper. Desalin Water Treat 86:213–220. https://doi.org/10.5004/dwt.2017.21332

    Article  CAS  Google Scholar 

  7. Dehghani M, Nozari M, Golkari I, Rostami N, Shiri MA (2018) Adsorption and kinetic studies of hexavalent chromium by dehydrated Scrophularia striata stems from aqueous solutions. Desalin Water Treat 125:81–92. https://doi.org/10.5004/dwt.2018.22953

    Article  CAS  Google Scholar 

  8. Dehghani M, Nozari M, Golkari I, Rostami N, Shiri MA Adsorption of mercury (II) from aqueous solutions using dried Scrophularia striata stems: adsorption and kinetic studies, Desalin Water Treat 203 (2020) 1–13. https://doi.org/10.5004/dwt.2020.26232.

  9. Sayğılı H, Güzel F (2016) Effective removal of tetracycline from aqueous solution using activated carbon prepared from tomato (Lycopersicon esculentum Mill.) industrial processing waste. Ecotoxicol Environ Saf 131:22–29. https://doi.org/10.1016/j.ecoenv.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  10. Bangari RS, Sinha N (2019) Adsorption of tetracycline, ofloxacin and cephalexin antibiotics on boron nitride nanosheets from aqueous solution. J Mol Liq 293:111376. https://doi.org/10.1016/j.molliq.2019.111376

    Article  CAS  Google Scholar 

  11. Amirmahani N, Mahdizadeh H, Malakootian M, Pardakhty A, Mahmoodi N (2020) Evaluating Nanoparticles Decorated on Fe3O4@SiO2-Schiff Base (Fe3O4@SiO2-APTMS-HBA) in Adsorption of Ciprofloxacin from Aqueous Environments. J Inorg Organometallic Polym Mater 30(9):3540–3551. https://doi.org/10.1007/s10904-020-01499-5

    Article  CAS  Google Scholar 

  12. Wang P, Wang X, Yu S, Zou Y, Wang J, Chen Z, Alharbi NS, Alsaedi A, Hayat T, Chen Y (2016) Silica coated Fe3O4 magnetic nanospheres for high removal of organic pollutants from wastewater. Chem Eng J 306:280–288. https://doi.org/10.1016/j.cej.2016.07.068

    Article  CAS  Google Scholar 

  13. Dedi, Idayanti N, Kristiantoro T, Alam GFN, Sudrajat N, Magnetic properties of cobalt ferrite synthesized by mechanical alloying, AIP Conference Proceedings, AIP Publishing LLC, 2018, 020003. https://doi.org/10.1063/1.5038285.

  14. Nasatto PL, Pignon F, Silveira JL, Duarte MER, Noseda MD, Rinaudo M (2015) Methylcellulose, a cellulose derivative with original physical properties and extended applications. Polymers 7(5):777–803. https://doi.org/10.3390/polym7050777

    Article  CAS  Google Scholar 

  15. Malakootian M, Nasiri A, Asadipour A, Faraji M, Kargar E (2019) A facile and green method for synthesis of ZnFe2O4@CMC as a new magnetic nanophotocatalyst for ciprofloxacin removal from aqueous media. MethodsX 6:1575–1580. https://doi.org/10.1016/j.mex.2019.06.018

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tamaddon F, Mosslemin MH, Asadipour A, Gharaghani MA, Nasiri A (2020) Microwave-assisted preparation of ZnFe2O4@methyl cellulose as a new nano-biomagnetic photocatalyst for photodegradation of metronidazole. Int J Biol Macromol 154:1036–1049. https://doi.org/10.1016/j.ijbiomac.2020.03.069

    Article  CAS  PubMed  Google Scholar 

  17. Nasiri A, Malakootian M, Heidari MR, Asadzadeh SN (2021) CoFe2O4@Methylcelloluse as a New Magnetic Nano Biocomposite for Sonocatalytic Degradation of Reactive Blue 19. J Polym Environ. https://doi.org/10.1007/s10924-021-02074-w

    Article  Google Scholar 

  18. Nasiri A, Tamaddon F, Mosslemin MH, Faraji M (2019) A microwave assisted method to synthesize nanoCoFe2O4@methyl cellulose as a novel metal-organic framework for antibiotic degradation. MethodsX 6:1557–1563. https://doi.org/10.1016/j.mex.2019.06.017

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nasiri A, Tamaddon F, Mosslemin MH, Amiri Gharaghani M, Asadipour A (2019) Magnetic nano-biocomposite CuFe2O4@methylcellulose (MC) prepared as a new nano-photocatalyst for degradation of ciprofloxacin from aqueous solution, Environ Health Eng. Manag J 6(1): 41–51. https://doi.org/10.15171/ehem.2019.05.

  20. Tamaddon F, Nasiri A, Yazdanpanah G (2020) Photocatalytic degradation of ciprofloxacin using CuFe2O4@methyl cellulose based magnetic nanobiocomposite. MethodsX 7:74–81. https://doi.org/10.1016/j.mex.2019.12.005

    Article  PubMed  Google Scholar 

  21. Chen Y, Xu R, Li Y, Liu Y, Wu Y, Chen Y, Zhang J, Chen S, Yin H, Zeng Z, Wang S (2020) La(OH)3-modified magnetic CoFe2O4 nanocomposites: A novel adsorbent with highly efficient activity and reusability for phosphate removal. Colloids Surf A Physicochem Eng Asp 599:124870. https://doi.org/10.1016/j.colsurfa.2020.124870

    Article  CAS  Google Scholar 

  22. Malakootian M, Nasiri A, Mahdizadeh H (2018) Preparation of CoFe2O4/activated carbon@chitosan as a new magnetic nanobiocomposite for adsorption of ciprofloxacin in aqueous solutions. Water Sci Technol 78(10):2158–2170. https://doi.org/10.2166/wst.2018.494

    Article  CAS  PubMed  Google Scholar 

  23. Malakootian M, Nasiri A, Mahdizadeh H (2019) Metronidazole adsorption on CoFe2O4 /activated carbon@chitosan as a new magnetic biocomposite: Modelling, analysis, and optimization by response surface methodology. Desalin Water Treat 164:215–227. https://doi.org/10.5004/dwt.2019.24433

    Article  CAS  Google Scholar 

  24. Chang S, Zhang Q, Lu Y, Wu S, Wang W (2020) High-efficiency and selective adsorption of organic pollutants by magnetic CoFe2O4/graphene oxide adsorbents: Experimental and molecular dynamics simulation study. Sep Purif Technol 2020:238. https://doi.org/10.1016/j.seppur.2019.116400

    Article  CAS  Google Scholar 

  25. Yekta S, Sadeghi M, Mirzaei D, Zabardasti A, Farhadi S (2019) Removal of nerve agent sarin simulant from aqueous solution using the ZSM-5/CoFe2O4 NPs adsorbent. J Iran Chem Soc 16(2):269–282. https://doi.org/10.1007/s13738-018-1504-y

    Article  CAS  Google Scholar 

  26. Thuong NT, Thu NTN, Giang BL, Trinh ND, Quynh BTP (2019) Adsorptive removal of Pb (Ii) using exfoliated graphite adsorbent: Influence of experimental conditions and magnetic CoFe2O4 decoration. IIUM Eng J 20(1): 202–215. https://doi.org/10.31436/iiumej.v20i1.965.

  27. Palza H, Delgado K, Govan J (2019) Novel magnetic CoFe2O4/layered double hydroxide nanocomposites for recoverable anionic adsorbents for water treatment. Appl Clay Sci 2019:183. https://doi.org/10.1016/j.clay.2019.105350

    Article  CAS  Google Scholar 

  28. Cai K, Shen W, Ren B, He J, Wu S, Wang W (2017) A phytic acid modified CoFe2O4 magnetic adsorbent with controllable morphology, excellent selective adsorption for dyes and ultra-strong adsorption ability for metal ions. Chem Eng J 330:936–946. https://doi.org/10.1016/j.cej.2017.08.009

    Article  CAS  Google Scholar 

  29. Zhang M, Mao Y, Wang W, Yang S, Song Z, Zhao X (2016) Coal fly ash/CoFe2O4 composites: A magnetic adsorbent for the removal of malachite green from aqueous solution. RSC Adv 6(96):93564–93574. https://doi.org/10.1039/c6ra08939a

    Article  CAS  Google Scholar 

  30. Tran TV, Nguyen DTC, Le HT, Bach LG, Vo DVN, Lim KT, Nong LX, Nguyen TD (2019) Combined Minimum-Run Resolution IV and Central Composite Design for Optimized Removal of the Tetracycline Drug Over Metal-Organic Framework-Templated Porous Carbon. Molecules 24(10):1887. https://doi.org/10.3390/molecules24101887

    Article  CAS  PubMed Central  Google Scholar 

  31. Foroughi M, Rahmani AR, Asgari G, Nematollahi D, Yetilmezsoy K, Samarghandi MR (2019) Optimization and Modeling of Tetracycline Removal from Wastewater by Three-Dimensional Electrochemical System: Application of Response Surface Methodology and Least Squares Support Vector Machine. Environ Model Assess 25:327–341. https://doi.org/10.1007/s10666-019-09675-9

    Article  Google Scholar 

  32. Wu J, Zhang H, Oturan N, Wang Y, Chen L, Oturan MA (2012) Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2–IrO2) anode. Chemosphere 87(6):614–620. https://doi.org/10.1016/j.chemosphere.2012.01.036

    Article  CAS  PubMed  Google Scholar 

  33. Topal M, Topal EIA (2020) Optimization of tetracycline removal with chitosan obtained from mussel shells using RSM. J Ind Eng Chem 84:315–321. https://doi.org/10.1016/j.jiec.2020.01.013

    Article  CAS  Google Scholar 

  34. Foroughi M, Azqhandi MHA, Kakhki S (2020) Bio-inspired, high, and fast adsorption of tetracycline from aqueous media using Fe3O4-g-CN@PEI-β-CD nanocomposite: Modeling by response surface methodology (RSM), boosted regression tree (BRT), and general regression neural network (GRNN). J Hazard Mater 388:121769. https://doi.org/10.1016/j.jhazmat.2019.121769

    Article  CAS  PubMed  Google Scholar 

  35. Samadi MT, Zolghadrnasab H, Godini K, Poormohammadi A, Ahmadian M, Shanesaz S (2015) Kinetic and adsorption studies of reactive black 5 removal using multi-walled carbon nanotubes from aqueous solution, Der Pharma Chemica 7(5): 267–274. http://eprints.umsha.ac.ir/id/eprint/1854.

  36. Oliveira RL, Vieira JG, Barud HS, Assunção R, Filho R, G, Ribeiro SJ, Messadeqq Y, (2015) Synthesis and Characterization of Methylcellulose Produced from Bacterial Cellulose under Heterogeneous Condition. J Braz Chem Soc 26(9):1861–1870. https://doi.org/10.5935/0103-5053.20150163

    Article  CAS  Google Scholar 

  37. Wiercigroch E, Szafraniec E, Czamara K, Pacia MZ, Majzner K, Kochan K, Kaczor A, Baranska M, Malek K (2017) Raman and infrared spectroscopy of carbohydrates: A review. Spectrochim Acta A Mol Biomol Spectrosc 185:317–335. https://doi.org/10.1016/j.saa.2017.05.045

    Article  CAS  PubMed  Google Scholar 

  38. Sekiguchi Y, Sawatari C, Kondo T (2003) A gelation mechanism depending on hydrogen bond formation in regioselectively substituted O-methylcelluloses. Carbohydr Polym 53(2):145–153. https://doi.org/10.1016/s0144-8617(03)00050-x

    Article  CAS  Google Scholar 

  39. Rodrigues Filho G, De Assunção RM, Vieira JG, Meireles CDS, Cerqueira DA, Da Silva BH, Ribeiro SJ, Messaddeq Y (2007) Characterization of methylcellulose produced from sugar cane bagasse cellulose: Crystallinity and thermal properties. Polym Degrad Stab 92(2):205–210. https://doi.org/10.1016/j.polymdegradstab.2006.11.008

    Article  CAS  Google Scholar 

  40. De Carvalho OG, Filho GR, Vieira JG, De Assunção RM, da Silva MC, Cerqueira DA, de Oliveira RJ, Silva WG, De Castro Motta LA (2010) Synthesis and application of methylcellulose extracted from waste newspaper in CPV-ARI Portland cement mortars. J Appl Polym Sci 118(3):1380–1385. https://doi.org/10.1002/app.32477

    Article  CAS  Google Scholar 

  41. Waldron RD (1955) Infrared spectra of ferrites. Phys Rev 99(6):1727. https://doi.org/10.1103/PhysRev.99.1727

    Article  CAS  Google Scholar 

  42. El-Sayed AM (2002) Influence of zinc content on some properties of Ni–Zn ferrites. Ceram Int 28(4):363–367. https://doi.org/10.1016/s0272-8842(01)00103-1

    Article  CAS  Google Scholar 

  43. Mallapur MM, Shaikh PA, Kambale RC, Jamadar HV, Mahamuni PU, Chougule BK (2009) Structural and electrical properties of nanocrystalline cobalt substituted nickel zinc ferrite. J Alloys Compd 479(1–2):797–802. https://doi.org/10.1016/j.jallcom.2009.01.142

    Article  CAS  Google Scholar 

  44. Habibi MH, Parhizkar J (2015) Cobalt ferrite nano-composite coated on glass by Doctor Blade method for photo-catalytic degradation of an azo textile dye Reactive Red 4: XRD. FESEM and DRS investigations, Spectrochim Acta A Mol Biomol Spectrosc 150:879–885. https://doi.org/10.1016/j.saa.2015.06.040

    Article  CAS  PubMed  Google Scholar 

  45. Farhadi S, Siadatnasab F (2016) Synthesis and structural characterization of magnetic cadmium sulfide–cobalt ferrite nanocomposite, and study of its activity for dyes degradation under ultrasound. J Mol Struct 1123:171–179. https://doi.org/10.1016/j.molstruc.2016.06.032

    Article  CAS  Google Scholar 

  46. Mehran E, Shayesteh SF, Sheykhan M (2016) Structural and magnetic properties of turmeric functionalized CoFe2O4 nanocomposite powder. Chin Phys B 25(10):107504. https://doi.org/10.1088/1674-1056/25/10/107504

    Article  CAS  Google Scholar 

  47. Samaila Bawa W, Mansor H, Wan Daud Wan Y, Zulkifly A (2010) X-ray diffraction studies on crystallite size evolution of CoFe2O4 nanoparticles prepared using mechanical alloying and sintering. Appl Surf Sci 256(10):3122–3127. https://doi.org/10.1016/j.apsusc.2009.11.084

    Article  CAS  Google Scholar 

  48. Kalam A, Al-Sehemi AG, Assiri M, Du G, Ahmad T, Ahmad I, Pannipara M (2018) Modified solvothermal synthesis of cobalt ferrite (CoFe2O4) magnetic nanoparticles photocatalysts for degradation of methylene blue with H2O2/visible light. Results Phys 8:1046–1053. https://doi.org/10.1016/j.rinp.2018.01.045

    Article  Google Scholar 

  49. Nguyen VT, Nguyen TB, Chen CW, Hung CM, Chang JH, Dong CD (2019) Influence of pyrolysis temperature on polycyclic aromatic hydrocarbons production and tetracycline adsorption behavior of biochar derived from spent coffee ground. Bioresour Technol 284:197–203. https://doi.org/10.1016/j.biortech.2019.03.096

    Article  CAS  PubMed  Google Scholar 

  50. He J, Ni F, Cui A, Chen X, Deng S, Shen F, Huang C, Yang G, Song C, Zhang J (2020) New insight into adsorption and co-adsorption of arsenic and tetracycline using a Y-immobilized graphene oxide-alginate hydrogel: Adsorption behaviours and mechanisms. Sci Total Environ 701:134363. https://doi.org/10.1016/j.scitotenv.2019.134363

    Article  CAS  PubMed  Google Scholar 

  51. Malakootian M, Bahraini S, Zarrabi M, Malakootian M (2016) Removal of Tetracycline antibiotic from aqueous solutions using natural and modified pumice with magnesium chloride, Adv Environ Biol 10: 46–56. https://doi.org/10.17795/jjhr-37583.

  52. Hami HK, Abbas RF, Waheb AA, Abed MA, Maryoosh AA (2019) Isotherm and pH Effect Studies of Tetracycline Drug Removal from Aqueous Solution Using Cobalt Oxide Surface, Al-Nahrain J Sci 22(2): 12–18. https://doi.org/10.22401/anjs.22.2.02.

  53. Mohammed AA, Kareem SL (2019) Adsorption of tetracycline fom wastewater by using Pistachio shell coated with ZnO nanoparticles: Equilibrium, kinetic and isotherm studies. Alex Eng J 58(3):917–928. https://doi.org/10.1016/j.aej.2019.08.006

    Article  Google Scholar 

  54. Zhu H, Chen T, Liu J, Li D (2018) Adsorption of tetracycline antibiotics from an aqueous solution onto graphene oxide/calcium alginate composite fibers. RSC Adv 8(5):2616–2621. https://doi.org/10.1039/c7ra11964j

    Article  CAS  Google Scholar 

  55. Xu D, Gao Y, Lin Z, Gao W, Zhang H, Karnowo K, Hu X, Sun H, Syed-Hassan SSA, Zhang S (2019) Application of biochar derived from pyrolysis of waste fiberboard on tetracycline adsorption in aqueous solution. Front Chem 7:943. https://doi.org/10.3389/fchem.2019.00943

    Article  CAS  PubMed  Google Scholar 

  56. Guler UA, Sarioglu M (2014) Removal of tetracycline from wastewater using pumice stone: equilibrium, kinetic and thermodynamic studies. J Environ Health Sci Eng 12(1):79. https://doi.org/10.1186/2052-336x-12-79

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhao C, Ma J, Li Z, Xia H, Liu H, Yang Y (2020) Highly enhanced adsorption performance of tetracycline antibiotics on KOH-activated biochar derived from reed plants. RSC Adv 10(9):5066–5076. https://doi.org/10.1039/c9ra09208k

    Article  CAS  Google Scholar 

  58. Aslan S, Yalçin K, Hanay Ö, Yildiz B (2016) Removal of tetracyclines from aqueous solution by nanoscale Cu/Fe bimetallic particle. Desalin Water Treat 57(31):14762–14773. https://doi.org/10.1080/19443994.2015.1067870

    Article  CAS  Google Scholar 

  59. Hao Y-M, Man C, Hu Z-B (2010) Effective removal of Cu (II) ions from aqueous solution by amino-functionalized magnetic nanoparticles. J Hazard Mater 184(1–3):392–399. https://doi.org/10.1016/j.jhazmat.2010.08.048

    Article  CAS  PubMed  Google Scholar 

  60. Naiya TK, Bhattacharya AK, Das SK (2009) Adsorption of Cd (II) and Pb (II) from aqueous solutions on activated alumina. J Colloid Interface Sci 333(1):14–26. https://doi.org/10.1016/j.jcis.2009.01.003

    Article  CAS  PubMed  Google Scholar 

  61. Hu J, Chen G, Lo IM (2005) Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles. Water Res 39(18):4528–4536. https://doi.org/10.1016/j.watres.2005.05.051

    Article  CAS  PubMed  Google Scholar 

  62. Pils JR, Laird DA (2007) Sorption of tetracycline and chlortetracycline on K-and Ca-saturated soil clays, humic substances, and clay humic complexes. Environ Sci Technol 41(6):1928–1933. https://doi.org/10.1021/es062316y.s001

    Article  CAS  PubMed  Google Scholar 

  63. Li Z, Schulz L, Ackley C, Fenske N (2010) Adsorption of tetracycline on kaolinite with pH-dependent surface charges. J Colloid Interface Sci 351(1):254–260. https://doi.org/10.1016/j.jcis.2010.07.034

    Article  CAS  PubMed  Google Scholar 

  64. Rathod M, Haldar S, Basha S (2015) Nanocrystalline cellulose for removal of tetracycline hydrochloride from water via biosorption: Equilibrium, kinetic and thermodynamic studies. Ecol Eng 84:240–249. https://doi.org/10.1016/j.ecoleng.2015.09.031

    Article  Google Scholar 

  65. Erşan M (2016) Removal of tetracycline using new biocomposites from aqueous solutions. Desalin Water Treat 57(21):9982–9992. https://doi.org/10.1080/19443994.2015.1033765

    Article  CAS  Google Scholar 

  66. Li K, Ji F, Liu Y, Tong Z, Zhan X, Hu Z (2013) Adsorption removal of tetracycline from aqueous solution by anaerobic granular sludge: equilibrium and kinetic studies. Water Sci Technol 67(7):1490–1496. https://doi.org/10.2166/wst.2013.016

    Article  CAS  PubMed  Google Scholar 

  67. Huízar-Félix AM, Aguilar-Flores C, Martínez-de-la Cruz A, Barandiarán JM, Sepúlveda-Guzmán S, Cruz-Silva R (2019) Removal of tetracycline pollutants by adsorption and magnetic separation using reduced graphene oxide decorated with α-Fe2O3 nanoparticles. Nanomaterials 9(3):313. https://doi.org/10.3390/nano9030313

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgement

This paper was the result of a research project (ethics code number: IR.KMU.REC.1399.337 and project number: 98001200) approved by the Student Research Committee of Kerman University of Medical Sciences, which was carried out by the financial support of the Vice–Chancellor for Research and Technology of this university. We would like to thank the Student Research Committee and Environmental Health Engineering Research Center of Kerman University of Medical Sciences for their financial and scientific support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Nozari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasiri, A., Malakootian, M., Shiri, M.A. et al. CoFe2O4@methylcellulose synthesized as a new magnetic nanocomposite to tetracycline adsorption: modeling, analysis, and optimization by response surface methodology. J Polym Res 28, 192 (2021). https://doi.org/10.1007/s10965-021-02540-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02540-y

Keywords

Navigation