Skip to main content
Log in

Polyurethane elastomer–silica hybrid films based on oxytetramethylene soft segments: thermal and thermo-mechanical investigations

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

An isocyanate-terminated polyoxytetramethylene (IPOTM; \(\stackrel{-}{MW}\) = 1350 g/mol) was used to modify silica nanoparticles (SNPs). The nanoparticles were spherically coated by an organic shell consisting of the polyether material with 55% by weight, according to thermogravimetric analysis (TGA). IPOTM diisocyanate, as a telechelic prepolymer, was also used for the preparation of polyurethane elastomers (PUEs) through polyaddition reactions with 1,4-butane diol in the presence/absence of IPOTM-modified SNPs. The elastomers were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and field emission-scanning electron microscopy (FE-SEM). Despite the use of the low amounts of the organically modified filler (5.0 and 7.0 wt.% of OSNPs), a significant enhancement in the storage and loss moduli (E' and E'' values) of the elastomeric films could be occurred. Also, according to the tan δ vs temperature graphs obtained from dynamic mechanical analysis (DMA), the IPOTM-modified SNPs led to a little decrease, up to 5°C, in the glass transition temperatures (Tg values) of the elastomers. In addition, TGA thermograms showed that no reduction occurred in the thermal stability of the elastomeric polyurethanes after the addition of IPOTM-modified nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xie F, Zhang T, Bryant P, Kurusingal V, Colwell JM, Laycock B (2019) Degradation and stabilization of polyurethane elastomers. Prog Polym Sci 90:211–268

    Article  CAS  Google Scholar 

  2. Harle T, Nguyen GT, Ledesert B, Melinge Y, Hebert RL (2020) Cross-linked polyurethane as solid-solid phase change material for low temperature thermal energy storage. Thermochim Acta 685:178–191

    Article  Google Scholar 

  3. Guney A, Gardiner C, McCormack A, Malda J, Grijpma DW (2018) Thermoplastic PCL-b-PEG-b-PCL and HDI Polyurethanes for Extrusion-Based 3D-Printing of Tough Hydrogels. Bioengineering 5(99)

  4. Akindoyo JO, Beg M, Ghazali S, Islam M, Jeyaratnam N, Yuvaraj A (2016) Polyurethane types, synthesis and applications:a review RSC Adv 6(115):114453–114482

  5. Jian X, Hu Y, Zhou W, Xiao L (2018) Self-healing polyurethane based on disulfide bond and hydrogen bond. Polym Adv Technol 29(1):463–469

    Article  CAS  Google Scholar 

  6. Kasprzyk P, Sadowska E, Datta J (2019) Investigation of Thermoplastic Polyurethanes Synthesized via Two Different Prepolymers. J Polym Environ 27:2588–2599

    Article  CAS  Google Scholar 

  7. Tsou CH, Lee HT, Tsai HA, Cheng HJ, Suen MC (2013) Synthesis and properties of biodegradable polycaprolactone/polyurethanes by using 2, 6-pyridinedimethanol as a chain extender. Polym Degrad Stab 98:643–650

    Article  CAS  Google Scholar 

  8. Wang F, Chen S, Wu Q, Zhang R, Sun P (2019) Strain-induced structural and dynamic changes in segmented polyurethane elastomers. Polymer 163:154–161

    Article  CAS  Google Scholar 

  9. Zaredar Z, Askari F, Shokrolahi P (2018) Polyurethane synthesis for vascular application. Prog Biomater 7(4):269–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou X, Li Y, Fang C, Li S, Cheng Y, Lei W, Meng X (2015) Recent advances in synthesis of waterborne polyurethane and their application in water-based ink: a review. J Mater Sci Technol 31:708–722

    Article  Google Scholar 

  11. Mirabedini A, Mohseni M, Ramezanzadeh B (2013) A comparative study between experimentally measured mechanical attributes and users’ perception of soft feel coatings: Correlating human sense with surface characteristics of polyurethane based coatings. Prog Org Coat 76:1369–1375

    Article  CAS  Google Scholar 

  12. Saavedra J, Lopez-Beceiro J, Naya S, Artiaga R (2008) Effect of silica content on thermal stability of fumed silica/epoxy composites. Polym Degrad Stab 93(12):2133–2137

    Article  Google Scholar 

  13. Dittanet P, Pearson RA, Kongkachuichay P (2017) Thermo-mechanical behaviors and moisture absorption of silica nanoparticle reinforcement in epoxy resins. Int J Adhes Adhes 78:74–82

    Article  CAS  Google Scholar 

  14. Jong L (2019) Improved mechanical properties of silica reinforced rubber with natural polymer. Poly Test 79:106–109

    Article  Google Scholar 

  15. Lee DW, Yoo BR (2016) Advanced silica/polymer composites: Materials and applications. J Ind Eng Chem 38:1–12

    Article  CAS  Google Scholar 

  16. Hajibeygi M, Shabanian M, Omidi-Ghallemohamadi M (2017) Development of new acid-imide modified Mg-Al/LDH reinforced semi-crystalline poly (amide-imide) containing naphthalene ring; study on thermal stability and optical properties. Appl Clay Sci 139:9–19

    Article  CAS  Google Scholar 

  17. Hajibeygi M, Shabanian M, Omidi-Ghallemohamadi M, Khonakdar HA (2017) Optical, thermal and combustion properties of self-colored polyamide nanocomposites reinforced with azo dye surface modified ZnO nanoparticles. Appl Surf Sci 416:628–638

    Article  CAS  Google Scholar 

  18. Omidi-Ghallemohamadi M, Ahmadi-Khaneghah A, Behniafar H (2019) Epoxy networks possessing polyoxyethylene unites and loaded by Jeffamine-modified graphene oxide nanoplatelets. Prog Org Coat 134:264–271

    Article  CAS  Google Scholar 

  19. Sari MG, Saeb MR, Shabanian M, Khaleghi M, Vahabi H, Vagner C, Zarrintaj P (2018) Epoxy/starch-modified nano-zinc oxide transparent nanocomposite coatings: A showcase of superior curing behavior. Prog Org Coat 115:143–150

    Article  CAS  Google Scholar 

  20. Ahmadi-Khaneghah A, Omidi-Ghallemohamadi M, Behniafar H (2019) PEG-based epoxy and epoxy/silica networks: Thermal, mechanical, and thermo-mechanical investigations. Int J Adhes Adhes 95:102430

    Article  CAS  Google Scholar 

  21. Kim SK, Nguyen NA, Wie JJ, Park HS (2015) Manipulating the glass transition behavior of sulfonated polystyrene by functionalized nanoparticle inclusion. Nanoscale 7(19):8864–8872

    Article  CAS  PubMed  Google Scholar 

  22. Mallakpour S, Naghdi M (2018) Polymer/SiO2 nanocomposites: Production and applications. Prog Mater Sci 97:409–447

    Article  CAS  Google Scholar 

  23. Farrukh A, Ashraf F, Kaltbeitzel A, Ling X, Wagner M, Duran H, Ghaffar A, Rehman PSH, Domke KF (2015) Polymer brush functionalized SiO2 nanoparticle based Nafion nanocomposites: a novel avenue to low-humidity proton conducting membranes. Polym Chem 6(31):5782–5789

    Article  CAS  Google Scholar 

  24. Dinari M, Haghighi A (2017) Surface modification of TiO2 nanoparticle by three dimensional silane coupling agent and preparation of polyamide/modified-TiO2 nanocomposites for removal of Cr (VI) from aqueous solutions. Prog Org Coat 110:24–34

    Article  CAS  Google Scholar 

  25. Arun M, Kantheti S, Gaddam RR, Narayan R, Raju K (2014) Surface modification of TiO2 nanoparticles with 1, 3, 5-triazine based silane coupling agent and its cumulative effect on the properties of polyurethane composite coating. J Polym Res 21(12):600

    Article  Google Scholar 

  26. Ghomi ER, Khorasani SN, Kichi MK, Dinari M, Ataei S, Enayati MH, Koochaki MS, Neisiany RE (2020) Synthesis and characterization of TiO2/acrylic acid-co-2-acrylamido-2-methyl propane sulfonic acid nanogel composite and investigation its self-healing performance in the epoxy coatings. Colloid Polym Sci 1–11

  27. Mallakpour S, Nikkhoo E (2013) Morphological and thermal properties of nanocomposites contain poly (amide-imide) reinforced with bioactive N-trimellitylimido-L-valine modified TiO2 nanoparticles. J Polym Res 20(2):78

    Article  Google Scholar 

  28. Jouyandeh M, Paran SMR, M, Ghiyasi S, Vahabi H, Badawi M, Formela K, Puglia D, Saeb MR, (2018) Curing behavior of epoxy/Fe3O4 nanocomposites: a comparison between the effects of bare Fe3O4, Fe3O4/SiO2/chitosan and Fe3O4/SiO2/chitosan/imide/phenylalanine-modified nanofillers. Prog Org Coat 123:10–19

    Article  CAS  Google Scholar 

  29. Naeemikhah E, Ahmadi-khaneghah A, Heydari A, Behniafar H (2019) Magnetic crosslinked polystyrene with hydrophilic nature prepared through surface-initiated ATRP technique. Colloids Surf A 582:123–131

    Article  Google Scholar 

  30. Shabanian M, Mirzakhanian Z, Moghanian H, Hajibeygi M, Salimi H, Khonakdar HA (2017) Thermal, combustion and optical properties of new polyimide/ODA-functionalized Fe3O4 nanocomposites containing xanthene and amide groups. J Therm Anal Calorim 129:147–159

    Article  CAS  Google Scholar 

  31. Shabanian M, Moghanian H, Khaleghi M, Hajibeygi M, Khonakdar HA, Vahabi H (2016) Chitosan and imide-functional Fe3O4 nanoparticles to prepare new xanthene based poly (ether-imide) nanocomposites. RSC adv 6:112568–112575

    Article  CAS  Google Scholar 

  32. Rao TN, Hussain I, Koo BH (2019) Enhanced thermal properties of silica nanoparticles and chitosan bio-based intumescent flame retardant Polyurethane coatings. Mater Today Proc

  33. Lin B, Zhou S (2017) Poly (ethylene glycol)-grafted silica nanoparticles for highly hydrophilic acrylic-based polyurethane coatings. Prog Org Coat 106:145–154

    Article  CAS  Google Scholar 

  34. Bonab SA, Moghaddas J, Rezaei M (2019) In-situ synthesis of silica aerogel/polyurethane inorganic-organic hybrid nanocomposite foams: Characterization, cell microstructure and mechanical properties. Polymer 172:27–40

    Article  Google Scholar 

  35. Cho JW, Lee SH (2019) Influence of silica on shape memory effect and mechanical properties of polyurethane–silica hybrids. Eur polym j 40(7):1343–1348

    Article  Google Scholar 

  36. Sadeghi M, Semsarzadeh MA, Barikani M, Chenar MP (2011) Gas separation properties of polyether-based polyurethane–silica nanocomposite membranes. J Membr Sci 376:188–195

    Article  CAS  Google Scholar 

  37. Puszka A (2018) Thermal and mechanical behavior of new transparent thermoplastic polyurethane elastomers derived from cycloaliphatic diisocyanate. Polymers 10:537

    Article  PubMed Central  Google Scholar 

  38. Datta J, Kopczynska P (2015) Effect of kenaf fibre modification on morphology and mechanical properties of thermoplastic polyurethane materials. Ind Crops Prod 74:566–576

    Article  CAS  Google Scholar 

  39. Jiang G, Tuo X, Wang D, Li Q (2012) Synthesis and properties novel polyurethane-hexafluorobutyl methacrylate copolymers. J Mater Sci Mater Med 23(8):1867–1877

    Article  CAS  PubMed  Google Scholar 

  40. Behniafar H, Yazdi M (2016) PTMG-Modified MWCNT/PTMG-based polyurethane nanocomposites: Strong interaction and homogeneous dispersion. Polym Sci Ser B 58(6):736–744

    Article  CAS  Google Scholar 

  41. Behniafar H, Yazdi M (2018) Poly (tetramethylene oxide)(PTMO)-grafted carbon nanotubes for preparing PTMO-based polyurethane films with enhanced storage moduli. Adv Polym Technol 37:1374–1381

    Article  CAS  Google Scholar 

  42. Behniafar H, Ahmadi-khaneghah A, Yazdi M (2016) Enhanced heat stability and storage modulus in novel PTMO-intercalated clay platelets/PTMO-based polyurethane nanocomposites. J Polym Res 23:202

    Article  Google Scholar 

  43. Behniafar H, Alimohammadi M, Malekshahinezhad K (2015) Transparent and flexible films of new segmented polyurethane nanocomposites incorporated by NH2-functionalized TiO2 nanoparticles. Prog Org Coat 88:150–154

    Article  CAS  Google Scholar 

  44. Behniafar H, Azadeh S (2015) Transparent and flexible films of thermoplastic polyurethanes incorporated by Nano-SiO2 modified with 4, 4′-methylene diphenyl diisocyanate. Int J Polym Mater Polym Biomater 64:1–6

    Article  CAS  Google Scholar 

  45. Jafari F, Behniafar H (2019) Epoxy Networks Cured with α, ω-Diamino Polyoxytetramethylene in the Presence of Polyoxytetramethylene-coated Silica Nanoparticles. Polymer Korea 43(1):52–59

    Article  Google Scholar 

  46. Jafari F, Pajoohi E, Behniafar H (2019) Bisphenol A Diglycidyl Ether-Based Epoxy Networks with Enhanced Storage Moduli Using Silica Nanoparticles Coated by NH2-Functionalized Poly (tetramethylene oxide). Polym Sci Ser B 61(3):357–365

    Article  Google Scholar 

  47. Karimzadeh M, Eslampanah E, Behniafar H (2018) Poly (tetramethylene oxide)-coated silica nanoparticles incorporated into poly (4, 4′-oxydiphenylene-pyromellitimide) matrix. Mater Manuf Processes 33:1093–1099

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Research Council of Islamic Azad University-Damghan branch is greatly acknowledged. The authors wish to express their gratitude to the School of Chemistry and Research Council of Damghan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Behniafar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. 

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omidi-Ghallemohamadi, M., Jafari, P. & Behniafar, H. Polyurethane elastomer–silica hybrid films based on oxytetramethylene soft segments: thermal and thermo-mechanical investigations. J Polym Res 28, 96 (2021). https://doi.org/10.1007/s10965-021-02466-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02466-5

Keyword

Navigation