Skip to main content
Log in

Enhanced heat stability and storage modulus in novel PTMO-intercalated clay platelets/PTMO-based polyurethane nanocomposites

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Amine-telechelic poly(tetramethylene oxide) (PTMO) was trimethylated to a quaternary ammonium (QA)-capped PTMO as a bivalent organic macrocation. This QA-capped PTMO (QAPTMO) was used for intercalation of montmorillonite (MMT) platelets with 69 % ion exchange yield and 4.03 nm d-spacing. Then, segmented polyurethanes (SPU) with PTMO soft segments were synthesized in the presence of the QAPTMO-intercalated MMT filler in different contents. According to the X-ray and SEM analyses, the polyaddition reaction could result in a full exfoliation of the clay platelets. Two model composites including SPU polymer loaded by unmodified MMT and tetradecyltrimethylammonium bromide (TTAB)-intercalated MMT were also synthesized analogously. The SPU/QAPTMO-MMT composites possessing 5.0 and 7.0 wt.% of the filler obviously showed a better thermal behavior in comparison with SPU/TTAB-MMT and SPU/Na-MMT composites. In addition, a significant increase in the storage moduli of the polyurethane matrices occurred due to the QAPTMO-MMT particles, particularly in the 5.0 wt.% loading content of the filler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Beall GW, Powell CE (2011) Engineering properties of polymer–clay nanocomposites theory and theory validation (Chapter 5) in: Fundamentals of polymer-clay nanocomposites. Cambridge University Press, New York

    Book  Google Scholar 

  2. Chiu CW, Lin JJ (2012) Self-assembly behavior of polymer-assisted clays. Prog Polym Sci 37:406–444

    Article  CAS  Google Scholar 

  3. Chiu CW, Huang TK, Wang YC, Alamani BG, Lin JJ (2014) Intercalation strategies in clay/polymer hybrids. Prog Polym Sci 39:443–485

    Article  CAS  Google Scholar 

  4. Kiliaris P, Papaspyrides CD (2010) Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci 35:902–958

    Article  CAS  Google Scholar 

  5. Li M, Wu Z (2012) A review of intercalation composite phase change material: preparation, structure and properties. Renew Sust Energ Rev 16:2094–2101

    Article  CAS  Google Scholar 

  6. Rafiemanzelat F, Adli V, Mallakpour S (2015) Effective preparation of clay/waterborne Azo-containing polyurethane nanocomposite dispersions incorporated anionic groups in the chain termini. Des Monomers Polym 18:303–314

    Article  CAS  Google Scholar 

  7. Mallakpoura S, Shahangia V (2012) Modification of Clay with L-Leucine and TiO2 with Silane Coupling Agent for Preparation of Poly(Vinyl Alcohol)/Organo-Nanoclay/Modified TiO2 Nanocomposites Film. Des Monomers Polym 15:329–344

    Article  Google Scholar 

  8. Zahra M, Zulfiqar S, Yavuz CT, Kweon HS, Sarwar MI (2014) Conductive nanocomposite materials derived from SEBS-g-PPy and surface modified clay. Compos Sci Technol 100:44–52

    Article  CAS  Google Scholar 

  9. Jincheng W, Xiaoyu Z, Wenli H, Nan X, Xingchen P (2012) Synthesis of hyper-branched quaternary ammonium salt and its application into montmorillonite. Powder Technol 221:80–89

    Article  Google Scholar 

  10. Huang Y-F, Wang P-C, Lee J-H, Lee J-Y, Liu H-J (2015) Crystallization and Thermal Properties of PLLA–PEG 600/Clay Nanocomposites. Polym-Plast Technol Eng 54:433–439

    Article  CAS  Google Scholar 

  11. Shen Z, Cheng YB, Simon GP (2005) Sequential and Simultaneous Melt Intercalation of Poly(ethylene oxide) and Poly(methyl methacrylate) into Layered Silicates. Macromolecules 38:1744–1751

    Article  CAS  Google Scholar 

  12. Cai Y, Hu Y, Xiao J, Song L, Fan W, Deng H, Gong X, Chen Z (2007) Morphology, Thermal and Mechanical Properties of Poly (Styrene-Acrylonitrile) (SAN)/Clay Nanocomposites from Organic-Modified Montmorillonite. Polym-Plast Technol Eng 46:541–548

    Article  CAS  Google Scholar 

  13. Ezquerro CS, Ric GI, Minana CC, Bermejo JS (2015) Characterization of montmorillonites modified with organic divalent phosphonium cations. Appl Clay Sci 111:1–9

    Article  CAS  Google Scholar 

  14. Suin S, Khatua BB (2012) Exfoliated and optically transparent polycarbonate/clay nanocomposites using phosphonium modified organoclay: preparation and characterizations. Ind Eng Chem Res 51:15096–15108

    Article  CAS  Google Scholar 

  15. Mousa MH, Dong Y, Davies IJ (2016) Recent advances in bionanocomposites: preparation, properties, and applications. Int J Polym Mater Polym Biomater 65:225–254

    Article  CAS  Google Scholar 

  16. Jomaa MH, Masenelli-Varlot K, Seveyrat L, Lebrun L, Dib Jawhar MC, Beyou E, Cavaille JY (2015) Investigation of elastic, electrical and electromechanical properties of polyurethane/grafted carbon nanotubes nanocomposites. Compos Sci Technol 121:1–8

    Article  CAS  Google Scholar 

  17. Chattopadhyay DK, Webster DC (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34:1068–1133

    Article  CAS  Google Scholar 

  18. Jaaoh D, Putson C, Muensit N (2016) Enhanced strain response and energy harvesting capabilities of electrostrictive polyurethane composites filled with conducting polyaniline. Compos Sci Technol 122:97–103

    Article  CAS  Google Scholar 

  19. Liu X, Wang T, Li J, Cheng J, Zhang J (2015) Synthesis and properties of segmented polyurethanes with hydroquinone ether derivatives as chain extender. J Polym Res 22:149–159

    Article  Google Scholar 

  20. Pokharel P, Choi S, Lee DS (2015) The effect of hard segment length on the thermal and mechanical properties of polyurethane/graphene oxide nanocomposites. Compos A Appl Sci Manuf 69:168–177

    Article  CAS  Google Scholar 

  21. Tseng HJ, Lin JJ, Ho TT, Tseng SM, S-h H (2011) The biocompatibility and antimicrobial activity of nanocomposites from polyurethane and nano silicate platelets. J Biomed Mater Res Part A 99(A):192–202

    Article  Google Scholar 

  22. Behniafar H, Azadeh S (2015) Transparent and flexible films of thermoplastic polyurethanes incorporated by Nano-SiO2 modified with 4,4′-methylene diphenyl diisocyanate. Int J Polym Mater Polym Biomater 64:1–6

    Article  CAS  Google Scholar 

  23. Behniafar H, Alimohammadi M, Malekshahinezhad K (2015) Transparent and flexible films of new segmented polyurethane nanocomposites incorporated by NH2-functionalized TiO2 nanoparticles. Prog Org Coat 88:150–154

    Article  CAS  Google Scholar 

  24. Wang L, Wang S, Bei JZ (2004) Synthesis and characterization of macroinitiator-amino terminated PEG and poly(γ-benzyl-L-glutamate)-PEO-poly(γ-benzyl-L-glutamate) triblock copolymer. Polym Adv Technol 15:617–621

    Article  CAS  Google Scholar 

  25. Zheng X, Jiang DD, Wilkie CA (2006) Polystyrene nanocomposites based on an oligomerically-modified clay containing maleic anhydride. Polym Degrad Stabil 91:108–113

    Article  CAS  Google Scholar 

  26. Mittal V (2014) Foams Based on Starch, Bagasse Fibers, and Montmorillonite (Chapter 4) in: Polymer Nanocomposites Foams. CRC Press, Boca Raton

    Google Scholar 

  27. Pegoretti A, Dorigato A, Brugnara M, Penati A (2008) Contact angle measurements as a tool to investigate the filler–matrix interactions in polyurethane–clay nanocomposites from blocked prepolymer. Eur Polym J 44:1662–1672

    Article  CAS  Google Scholar 

  28. Nugay N, Nugay T, Kennedy JP (2013) Minute amounts of organically modified montmorillonite improve the properties of Polyisobutylene-based polyurethanes. J Polym Sci Part A Polym Chem 51:4076–4087

    Article  CAS  Google Scholar 

  29. Choi WJ, Kim SH, Kim YJ, Kim SC (2004) Synthesis of chain-extended organifier and properties of polyurethane/clay nanocomposites. Polymer 45:6045–6057

    Article  CAS  Google Scholar 

  30. Huang G, Gao J, Li Y, Han L, Wang X (2010) Functionalizing nano-montmorillonites by modified with intumescent flame retardant: preparation and application in polyurethane. Polym Degrad Stabil 95:245–253

    Article  CAS  Google Scholar 

  31. Tan H, Ma G, Xiao M, Nie J (2009) Photopolymerization and characteristics of reactive organoclay–polyurethane nanocomposites. Polym Composite 30:612–618

    Article  CAS  Google Scholar 

  32. Petrovic ZS, Zavargo Z, Flynn JH, Macknight WJ (1994) Thermal degradation of segmented polyurethanes. J Appl Polym Sci 51:1087–1095

    Article  CAS  Google Scholar 

  33. Zanetti M, Camino G, Thomann R, Mulhaupt R (2001) Synthesis and thermal behaviour of layered silicate–EVA nanocomposites. Polymer 42:4501–4507

    Article  CAS  Google Scholar 

  34. Ray SS, Okamoto K, Okamoto M (2003) Structure − Property relationship in biodegradable poly(butylene succinate)/layered silicate nanocomposites. Macromolecules 36:2355–2367

    Article  CAS  Google Scholar 

  35. Nikolaidis AK, Achilias DS, Karayannidis GP (2012) Effect of the type of organic modifier on the polymerization kinetics and the properties of poly(methyl methacrylate)/organomodified montmorillonite nanocomposites. Eur Polym J 48:240–251

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to the Faculty of Chemistry and Research Council of Damghan University for financial support of this research, and to Amirkabir University and University of Tehran for carrying out the DMTA and SEM analyses, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Behniafar.

Electronic supplementary material

ESM 1

(XLSX 1531 kb)

ESM 2

(XLSX 1406 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behniafar, H., Ahmadi-khaneghah, A. & Yazdi, M. Enhanced heat stability and storage modulus in novel PTMO-intercalated clay platelets/PTMO-based polyurethane nanocomposites. J Polym Res 23, 202 (2016). https://doi.org/10.1007/s10965-016-1097-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1097-z

Keywords

Navigation