Skip to main content

Advertisement

Log in

Evaluation of a rapid and long-effective pickling method for iron rust removal on metallic surfaces using carboxylic acid-based polymers

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This paper reports an alternative pickling method for rust removal on metallic surfaces using poly(acrylic acid) and poly(acrylic acid-co-itaconic acid). Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic resonance (NMR), thermogravimetry (TGA), static light scattering (SLS), and scanning electron microscopy (SEM) were performed to determine polymer and copolymers formation, thermal properties, molecular weights, and the morphological analysis of polymers, respectively. Through an experimental design, polymers’ response was determined in terms of the synthesis parameters. It was observed that both the initiator and the monomers’ molar ratio significantly affect the value of the polymers’ molecular weight. In contrast, for the rust removal, only the initiator had influence. The rust removal process was carried out by the carboxylic acid groups’ adhesion properties, which interacted with the oxidized plates’ polar hydroxyl groups. This method provides an effective and environmentally friendly way to rust removal on metallic surfaces compared with traditional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Song FM, Kirk DW, Graydon JW, Cormack DE (2004) Predicting Carbon Dioxide Corrosion of Bare Steel Under an Aqueous Boundary Layer. NACE Int 60:736–748

    CAS  Google Scholar 

  2. Dwivedi D, Becker T (2017) Carbon steel corrosion: a review of key surface properties and characterization methods. RSC Adv 7:4580–4610. https://doi.org/10.1039/c6ra25094g

    Article  CAS  Google Scholar 

  3. Nwankwo HU, Olasunkanmi LO, Ebenso EE (2017) Experimental, quantum chemical and molecular dynamic simulations studies on the corrosion inhibition of mild steel by some carbazole derivatives. Sci Rep 7:1–18. https://doi.org/10.1038/s41598-017-02446-0

    Article  CAS  Google Scholar 

  4. Ammar S, Ma IAW, Muhammad FMS, Bashir S, Selvaraj M, Assiri MA, Ramesh K, Ramesh S (2020) Electrochemical studies of 1,2,3-Benzotriazole inhibitor for acrylic-based coating in different acidic media systems. J Polym Res 27:142

    Article  CAS  Google Scholar 

  5. Agrawal A, Sahu KK (2009) An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries. J Hazard Mater 171:61–75. https://doi.org/10.1016/j.jhazmat.2009.06.099

    Article  CAS  PubMed  Google Scholar 

  6. Ding J, Tang B, Li M, Feng X, Fu F, Bin L, Huang S, Su W, Li D, Zheng L (2017) Difference in the characteristics of the rust layers on carbon steel and their corrosion behavior in an acidic medium: Limiting factors for cleaner pickling. J Clean Prod 142:2166–2176. https://doi.org/10.1016/j.jclepro.2016.11.066

    Article  CAS  Google Scholar 

  7. Hacias K (2000) In: Encyclopedia of Chemical Technology. John Wiley & Sons Inc, Metal Surface Treatments, Pickling

    Google Scholar 

  8. Dustou B, Latapie L, Chauvet F, Bergerat J, Tzedakis T (2017) Analytical Method to Monitor Industrial Pickling Baths Initially Constituted by HF, HNO3. J Anal Sci Methods Instrum 7:116–135. https://doi.org/10.4236/jasmi.2017.74009

    Article  CAS  Google Scholar 

  9. Urréjola S, Lora J (2016) Optimization of Electrolytic Cleaning of Low Carbon Steels. Eur J Sustain Dev 5:197–206. https://doi.org/10.14207/ejsd.2016.v5n3p197

  10. Starosvetsky J, Kamari R, Farber Y, Bilanovic D, Armon R (2016) Rust dissolution and removal by iron-reducing bacteria : A potential rehabilitation of rusted equipment. Corros Sci 102:446–454. https://doi.org/10.1016/j.corsci.2015.10.037

    Article  CAS  Google Scholar 

  11. Li X, Huang T, Chong AW, Zhou R, Choo YS, Hong M (2017) Laser cleaning of steel structure surface for paint removal and repaint adhesion. Opto-Elec Eng 44:340–344. https://doi.org/10.3969/j.issn.1003-501X.2017.03.009

    Article  Google Scholar 

  12. Ali SN, Taha ZA, Mansour TS (2014) Laser Cleaning Using Q-Switched Nd : YAG Laser of Low Carbon Steel Alloys. Adv Condens Matter Phys 2014:1–6

    Article  Google Scholar 

  13. Narayanan V, Singh RK, Marla D (2018) Laser cleaning for rust removal on mild steel : An experimental study on surface characteristics. MATEC Web Conf 221:4–7

    Article  Google Scholar 

  14. Olvera-Sosa M, Guerra-Contreras A, Gómez-Durán CFA, González-García R, Palestino G (2020) Tuning the pH-responsiveness capability of poly(acrylic acid-co-itaconic acid)/NaOH hydrogel: Design, swelling, and rust removal evaluation. J Appl Polym Sci 137. https://doi.org/10.1002/app.48403

  15. Dean A, Voss D (1999) Design and Analysis of Experiments. Springer-Verlag, New York

    Book  Google Scholar 

  16. Bahloul L, Bendebane F, Djenouhat M, Meradi H, Ismail F (2016) Effects and optimization of operating parameters of anionic dye extraction from an aqueous solution using an emulsified liquid membrane: Application of designs of experiments. J Taiwan Inst Chem Eng 59:26–32. https://doi.org/10.1016/j.jtice.2015.07.013

    Article  CAS  Google Scholar 

  17. Moçotéguy P, Ludwig B, Steiner NY (2016) Application of current steps and design of experiments methodology to the detection of water management faults in a proton exchange membrane fuel cell stack. J Power Sources 303:126–136. https://doi.org/10.1016/j.jpowsour.2015.10.078

    Article  CAS  Google Scholar 

  18. Guerra-Contreras A, Villegas A, Ramímez-Oliva E, Cervantes J (2017) Characterization and Study of Properties in a Polar Solvent of a Functionalized and Quaternized Poly(dimethylsiloxane-co-methyl-hydridosiloxane). Silicon 9:525–533. https://doi.org/10.1007/s12633-015-9286-7

    Article  CAS  Google Scholar 

  19. Huglin MB (1972) Light Scattering from Polymer Solutions. Academic Press Inc., London

    Google Scholar 

  20. Culbertson BM, Dotrong MH (2000) Preparation and evaluation of acrylic acid, itaconic acid, and N-methacryloylglutamic acid copolymers for use in glass-ionomer type dental restoratives. J Macromol Sci Pure Appl Chem 37:37–41. https://doi.org/10.1081/MA-100101102

    Article  Google Scholar 

  21. Silverstein R (2005) In: Spectrometric Identification of Organic Compounds. John Wiley & Sons Inc, Infrared Spectrometry

    Google Scholar 

  22. Dong J, Ozaki Y, Nakashima K (1997) Infrared, Raman, and Near-Infrared Spectroscopic Evidence for the Coexistence of Various Hydrogen-Bond Forms in Poly(acrylic acid). Macromolecules 30:1111–1117

    Article  CAS  Google Scholar 

  23. Todica M, Stefan R, Pop CV, Olar L (2015) IR and Raman Investigation of Some Poly(acrylic) Acid Gels in Aqueous and Neutralized State. Acta Phys Pol A 128:128–135. https://doi.org/10.12693/APhysPolA.128.128

  24. Dey RE, Zhong X, Youle PJ, Wang QG, Wimpenny I, Downes S, Hoyland JA, Watts DC, Gough JE, Budd PM (2016) Synthesis and Characterization of Poly(vinylphosphonic acid-co-acrylic acid) Copolymers for Application in Bone Tissue Scaffolds. Macromolecules 49:2656–2662. https://doi.org/10.1021/acs.macromol.5b02594

    Article  CAS  Google Scholar 

  25. Chen H, Lee H, Hua S, Chen KJ, Chen CW, Lin IH, Lin CC, Horie M (2016) Catalytic Cu(II) – polymer complexes as recyclable catalysts for the synthesis of poly(2,6-dimethyl-1,4-phenylene oxide)s in water. J Polym Res 23:248. https://doi.org/10.1007/s10965-016-1147-6

    Article  CAS  Google Scholar 

  26. Punitha R, Kirupha SD, Vivek S, Ravikumar L (2019) Synthesis and corrosion inhibition studies of modified polyacrylic acid bearing triazole moieties on aluminium in alkaline medium. J Polym Res 26:287

    Article  CAS  Google Scholar 

  27. Mcneill IC, Sadeghi SMT (1990) Thermal Stability and Degradation Mechanisms of Poly(Acrylic Acid) and its Salts : Part 1 Poly(Acrylic Acid ). Polym Degrad Stab 29:233–246

    Article  CAS  Google Scholar 

  28. Price EJ, Covello J, Tuchler A, Wnek GE (2020) Intumescent, Epoxy-Based Flame-Retardant Coatings Based on Poly(acrylic acid) Compositions. ACS Appl Mater Interfaces 12:18997–19005. https://doi.org/10.1021/acsami.0c00567

    Article  CAS  PubMed  Google Scholar 

  29. Cárdenas G, Muñoz C, Carbacho H (2000) Thermal properties and TGA-FTIR studies of polyacrylic and polymethacrylic acid doped with metal clusters. Eur Polym J 36:1091–1099. https://doi.org/10.1016/S0014-3057(99)00187-1

    Article  Google Scholar 

  30. Carrillo-Rodríguez JC, Meléndez-Ortiz HI, Puente-Urbina B, Padrón G, Ledezma A, Betancourt-Galindo R (2018) Composite Based on Poly(Acrylic Acid-co-Itaconic Acid) Hydrogel With Antibacterial Performance. Polym Compos 39:171–180. https://doi.org/10.1002/pc.23917

    Article  CAS  Google Scholar 

  31. Hara M, Nakajima A (1980) Characteristic behaviors of light scattering from polyelectrolyte in dilute solution region. Polym J 12:701–709. https://doi.org/10.1295/polymj.12.701

    Article  CAS  Google Scholar 

  32. Wohlfarth C (2010) In: Landolt-Börnstein VIII/6D2: Polymers, Polymer Solutions, Physical Properties and Their Relations I (Thermodynamic Properties: PVT-Data and Miscellaneous Properties of Polymer Solutions). Second virial coefficient of poly(acrylic acid) Springer, Heidelberg, Berlin

  33. Hwang KT, Jung ST, Lee GD, Chinnan MS, Park YS, Park HJ (2002) Controlling Molecular Weight and Degree of Deacetylation of Chitosan by Response Surface Methodology. J Agric Food Chem 50:1876–1882

    Article  CAS  Google Scholar 

  34. Yuan Y, Chesnutt BM, Haggard WO, Bumgardner JD (2011) Deacetylation of Chitosan: Material Characterization and in vitro Evaluation via Albumin Adsorption and Pre-Osteoblastic Cell Cultures. Materials (Basel) 4:1399–1416. https://doi.org/10.3390/ma4081399

    Article  CAS  Google Scholar 

  35. Saldivar-Guerra E, Vivaldo-Lima E (2013) Handbook of Polymer Synthesis, Characterization, and Processing Wiley

  36. Jin X, Bai YP, Shao L, Yang BH, Tang YP (2009) Properties of solvent-borne acrylic pressure-sensitive adhesives synthesized by a simple approach. Express Polym Lett 3:814–820. https://doi.org/10.3144/expresspolymlett.2009.100

    Article  CAS  Google Scholar 

  37. Czech Z, Arabczyk W, He A, Kowalczyk A (2013) Influence of iron carbide filler in carbon matrix on the adhesive properties of acrylic pressure-sensitive adhesives. Int J AdhesAdhes 40:210–214. https://doi.org/10.1016/j.ijadhadh.2012.07.010

    Article  CAS  Google Scholar 

  38. Ghim D, Kim JH (2016) Effects of composition and layer thickness of a butyl acrylate/acrylic acid copolymer on the adhesion properties. Korean J Chem Eng 33:707–710. https://doi.org/10.1007/s11814-015-0148-1

    Article  CAS  Google Scholar 

  39. Saberi J, Ansari M, Hoseinzadeh BE, Kordestani SS, Naghib SM (2018) Chitosan-Polyacrylic Acid Hybrid Nanoparticles as Novel Tissue Adhesive: Synthesis and Characterization. Fibers Polym 19:2458–2464. https://doi.org/10.1007/s12221-018-8762-2

    Article  CAS  Google Scholar 

  40. Sonnenberg L, Parvole J, Borisov O, Billon L, Gaub HE, Seitz M (2006) AFM-based single molecule force spectroscopy of end-grafted poly(acrylic acid) monolayers. Macromolecules 39:281–288. https://doi.org/10.1021/ma0505880

    Article  CAS  Google Scholar 

  41. Valtiner M, Grundmeier G (2010) Single Molecules as Sensors for Local Molecular Adhesion Studies. Langmuir 26:815–820. https://doi.org/10.1021/la9022322

    Article  CAS  PubMed  Google Scholar 

  42. Palacio MLB, Schricker SR, Bhushan B (2011) Bioadhesion of various proteins on random, diblock and triblock copolymer surfaces and the effect of pH conditions. J R Soc Interface 8:630–640. https://doi.org/10.1098/rsif.2010.0557

    Article  CAS  PubMed  Google Scholar 

  43. Wang T, Canetta E, Weerakkody TG, Keddie JL (2009) pH Dependence of the Properties of Waterborne Pressure-Sensitive Adhesives Containing Acrylic Acid. Appl Mater Interfaces 1:631–639. https://doi.org/10.1021/am800179y

    Article  CAS  Google Scholar 

  44. Castle JE, Watts JF (1981) In: Corrosion Control by Organic Coatings (Ed. H. Leidheiser). Cathodic disbondment of well characterized steel/coating interfaces, NACE, Houston, TX

  45. Sugama T, Kukacka LE, Carciello N (1984) Nature of interfacial interaction mechanisms between polyacrylic acid macromolecules and oxide metal surfaces. J Mater Sci 19:4045–4056

    Article  CAS  Google Scholar 

  46. Leadley SR, Watts JF (1997) The use of XPS to examine the interaction of poly(acrylic acid) with oxidised metal substrates. J Electron Spectros Relat Phenomena 85:107–121

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Eng. Fernando Rodríguez Juárez and B.S. Chem. Claudia Hernández Galván for the SEM and XRD analyzes, respectively, at the Institute of Metallurgy-UASLP. Many thanks to Chem. Daniel Ruiz Plaza and the National Laboratory for Characterization of Physicochemical Properties and Molecular Structure UG-UAA-CONACyT for the facilities granted during the NMR analysis. A. Camacho-Ramírez wishes to thank Prof. Gabriela Palestino for the scholarship awarded through the project DSA/103.5/15/11048 supported by the Functional Materials Network–PRODEP. A special acknowledgment to Q.F.B. Elena Monreal García for the fruitful scientific discussions we had at the beginning of this study and for her honest friendship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Palestino.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerra-Contreras, A., Camacho-Ramírez, A., Olvera-Sosa, M. et al. Evaluation of a rapid and long-effective pickling method for iron rust removal on metallic surfaces using carboxylic acid-based polymers. J Polym Res 28, 104 (2021). https://doi.org/10.1007/s10965-021-02461-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02461-w

Keywords

Navigation