Skip to main content

Advertisement

Log in

Wound dressings based on chitosan and gelatin containing starch, sesame oil and banana peel powder for the treatment of skin burn wounds

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A novel wound dressing based on chitosan (CS) and gelatin (GL) was prepared and the effect of potato-starch (ST), sesame oil (SO) and banana peel powder (BPP) on the physical and mechanical properties, cytocompatibility and wound healing capability of the films were evaluated. The mechanical results showed that the samples containing 5 wt% of potato-starch and 7 wt% of banana peel powder had the best mechanical properties (Elastic Modulus of 1930 MPa and Tensile Strength of 58.2 MPa). The scanning electron micrographs presented the uniform distribution of banana peel powder within the polymeric matrix up to 7 wt% of banana peel powder. By Adding banana peel powder to the film composition, the antibacterial activity of the films against E. coli and S. aureus bacteria increased. The MTT assay results revealed that the films containing banana peel powder had no toxicity and never caused cell death. In vivo experiments, using an animal model, demonstrated that the proliferation of blood vessels and angiogenesis along with connective tissues formations were accelerated considerably by the samples prepared in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liang D, Lu Z, Yang H, Gao J, Chen R (2016) Novel Asymmetric Wettable AgNPs/Chitosan Wound Dressing: In Vitro and In Vivo Evaluation. ACS Appl Mater Interfaces 8(6):3958–3968. https://doi.org/10.1021/acsami.5b11160

  2. Venkataprasanna KS, Prakash J, Vignesh S, Bharath G, Venkatesan M, Banat F, Sahabudeen S, Ramachandran S, Devanand Venkatasubbu G (2020) Fabrication of Chitosan/PVA/GO/CuO patch for potential wound healing application. Int J Biol Macromol 143:744–762. https://doi.org/10.1016/j.ijbiomac.2019.10.029

    Article  CAS  PubMed  Google Scholar 

  3. Atiyeh BS, Gunn SW, Hayek SN (2005) State of the art in burn treatment. World J Surg 29(2):131–148. https://doi.org/10.1007/s00268-004-1082-2

    Article  PubMed  Google Scholar 

  4. Rujitanaroj P-o, Pimpha N, Supaphol P (2008) Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer 49(21):4723–4732. https://doi.org/10.1016/j.polymer.2008.08.021

    Article  CAS  Google Scholar 

  5. Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923. https://doi.org/10.1002/jps.21210

    Article  CAS  PubMed  Google Scholar 

  6. Yusof NLBM, Wee A, Lim LY, Khor E (2003) Flexible chitin films as potential wound-dressing materials: wound model studies. J Biomed Mater Res 66:224–232. https://doi.org/10.1002/jbm.a.10545

    Article  CAS  Google Scholar 

  7. Chen JP, Chang GY, Chen JK (2008) Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids Surf A Physicochem Eng Asp 313–314:183–188. https://doi.org/10.1016/j.colsurfa.2007.04.129

    Article  CAS  Google Scholar 

  8. Akturk O, Tezcaner A, Bilgili H, Deveci MS, Gecit MR, Keskin D (2011) Evaluation of sericin/collagen membranes as prospective wound dressing biomaterial. J Biosci Bioeng 112(3):279–288. https://doi.org/10.1016/j.jbiosc.2011.05.014

    Article  CAS  PubMed  Google Scholar 

  9. Khil MS, Cha D-II, Kim HY, Kim IS, Bhattarai N (2003) Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res Part B: Appl Biomater 67:675–679. https://doi.org/10.1002/jbm.b.10058

    Article  CAS  Google Scholar 

  10. Balakrishnan B, Mohanty M, Fernandez AC, Mohanan PV, Jayakrishnan A (2006) Evaluation of the effect of incorporation of dibutyryl cyclic adenosine monophosphate in an in situ-forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 27(8):1355–1361. https://doi.org/10.1016/j.biomaterials.2005.08.021

    Article  CAS  PubMed  Google Scholar 

  11. Verron E, Khairoun I, Guicheux J, Bouler JM (2010) Calcium phosphate biomaterials as bone drug delivery systems: a review. Drug Discov Today 15(13–14):547–552. https://doi.org/10.1016/j.drudis.2010.05.003

    Article  CAS  PubMed  Google Scholar 

  12. Friess W (1998) Collagen – biomaterial for drug delivery. Eur J Pharm Biopharm 45:113–136. https://doi.org/10.1016/S0939-6411(98)00017-4

    Article  CAS  PubMed  Google Scholar 

  13. Luo Y, Kirker KR, Prestwich GD (2000) Cross-linked hyaluronic acid hydrogel films new biomaterials for drug delivery. J Controlled Release 69:169–184. https://doi.org/10.1016/S0168-3659(00)00300-X

    Article  CAS  Google Scholar 

  14. Zhang Z, Tan S, Feng SS (2012) Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials 33(19):4889–4906. https://doi.org/10.1016/j.biomaterials.2012.03.046

    Article  CAS  PubMed  Google Scholar 

  15. Chen YC, Lin RZ, Qi H, Yang Y, Bae H, Melero-Martin JM, Khademhosseini A (2012) Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv Funct Mater 22(10):2027–2039. https://doi.org/10.1002/adfm.201101662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Norotte C, Marga FS, Niklason LE, Forgacs G (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30):5910–5917. https://doi.org/10.1016/j.biomaterials.2009.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fuoco C, Sangalli E, Vono R, Testa S, Sacchetti B, Latronico MV, Bernardini S, Madeddu P, Cesareni G, Seliktar D, Rizzi R, Bearzi C, Cannata SM, Spinetti G, Gargioli C (2014) 3D hydrogel environment rejuvenates aged pericytes for skeletal muscle tissue engineering. Front Physiol 5:203. https://doi.org/10.3389/fphys.2014.00203

    Article  PubMed  PubMed Central  Google Scholar 

  18. Perez RA, Won JE, Knowles JC, Kim HW (2013) Naturally and synthetic smart composite biomaterials for tissue regeneration. Adv Drug Deliv Rev 65(4):471–496. https://doi.org/10.1016/j.addr.2012.03.009

    Article  CAS  PubMed  Google Scholar 

  19. Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29(3):322–337. https://doi.org/10.1016/j.biotechadv.2011.01.005

    Article  CAS  PubMed  Google Scholar 

  20. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62(1):83–99. https://doi.org/10.1016/j.addr.2009.07.019

    Article  CAS  PubMed  Google Scholar 

  21. Mi FL, Shyu ShSh, Wu YB, Lee ST, Shyong JY, Huang RN (2001) Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials 22:165–173. https://doi.org/10.1016/S0142-9612(00)00167-8

    Article  CAS  PubMed  Google Scholar 

  22. Liu X, Ma L, Mao Z, Gao C (2011) Chitosan-based biomaterials for tissue repair and regeneration 244:81–127. https://doi.org/10.1007/12_2011_118

    Article  CAS  Google Scholar 

  23. No HK, Meyers SP, Prinyawiwatkul W, Xu Z (2007) Applications of chitosan for improvement of quality and shelf life of foods: a review. J Food Sci 72(5):R87-100. https://doi.org/10.1111/j.1750-3841.2007.00383.x

    Article  CAS  PubMed  Google Scholar 

  24. Chien PJ, Sheu F, Yang FH (2007) Effects of edible chitosan coating on quality and shelf life of sliced mango fruit. J Food Eng 78(1):225–229. https://doi.org/10.1016/j.jfoodeng.2005.09.022

    Article  CAS  Google Scholar 

  25. Zeng D, Wu J, Kennedy JF (2008) Application of a chitosan flocculant to water treatment. Carbohyd Polym 71(1):135–139. https://doi.org/10.1016/j.carbpol.2007.07.039

    Article  CAS  Google Scholar 

  26. Jimtaisong A, Saewan N (2014) Utilization of carboxymethyl chitosan in cosmetics. Int J Cosmet Sci 36(1):12–21. https://doi.org/10.1111/ics.12102

    Article  CAS  PubMed  Google Scholar 

  27. Oh DX, Hwang DS (2013) A biomimetic chitosan composite with improved mechanical properties in wet conditions. Biotechnol Prog 29(2):505–512. https://doi.org/10.1002/btpr.1691

    Article  CAS  PubMed  Google Scholar 

  28. Bourtoom T, Chinnan MS (2008) Preparation and properties of rice starch–chitosan blend biodegradable film. LWT - Food Sci Technol 41(9):1633–1641. https://doi.org/10.1016/j.lwt.2007.10.014

    Article  CAS  Google Scholar 

  29. Chuang WY, Young TH, Yao ChH, Chiu WY (1999) Properties of the poly (vinyl alcohol)chitosan blend and its effect on the culture of fibroblast in vitro. Biomaterials 20:1479–1487. https://doi.org/10.1016/S0142-9612(99)00054-X

    Article  CAS  PubMed  Google Scholar 

  30. Chen F, Monnier X, Gällstedt M, Gedde UW, Hedenqvist MS (2014) Wheat gluten/chitosan blends: A new biobased material. Eur Polymer J 60:186–197. https://doi.org/10.1016/j.eurpolymj.2014.09.007

    Article  CAS  Google Scholar 

  31. Kim S, Nimni ME, Yang Z, Han B (2005) Chitosan/gelatin-based films crosslinked by proanthocyanidin. J Biomed Mater Res B Appl Biomater 75(2):442–450. https://doi.org/10.1002/jbm.b.30324

    Article  CAS  PubMed  Google Scholar 

  32. Rubentheren V, Ward TA, Chee CY, Tang CK (2015) Processing and analysis of chitosan nanocomposites reinforced with chitin whiskers and tannic acid as a crosslinker. Carbohydr Polym 115:379–387. https://doi.org/10.1016/j.carbpol.2014.09.007

    Article  CAS  PubMed  Google Scholar 

  33. Chen AH, Liu SC, Chen CY, Chen CY (2008) Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin. J Hazard Mater 154(1–3):184–191. https://doi.org/10.1016/j.jhazmat.2007.10.009

    Article  CAS  PubMed  Google Scholar 

  34. Xu Y, Qiu C, Zhang X, Zhang W (2014) Crosslinking chitosan into H3PO4/HNO3-NANO2 oxidized cellulose fabrics as antibacterial-finished material. Carbohydr Polym 112:186–194. https://doi.org/10.1016/j.carbpol.2014.05.054

    Article  CAS  PubMed  Google Scholar 

  35. Ashori A, Bahrami R (2014) Modification of physico-mechanical properties of chitosan-tapioca starch blend films using nano graphene. Polym-Plast Technol Eng 53(3):312–318. https://doi.org/10.1080/03602559.2013.866246

    Article  CAS  Google Scholar 

  36. Antoniou J, Liu F, Majeed H, Qi J, Yokoyama W, Zhong F (2015) Physicochemical and morphological properties of size-controlled chitosan–tripolyphosphate nanoparticles. Colloids Surf A Physiocochem Eng Asp 465:137–146. https://doi.org/10.1016/j.colsurfa.2014.10.040

    Article  CAS  Google Scholar 

  37. Toivonen MS, Kurki-Suonio S, Schacher FH, Hietala S, Rojas OJ, Ikkala O (2015) Water-resistant, transparent hybrid nanopaper by physical cross-linking with chitosan. Biomacromol 16(3):1062–1071. https://doi.org/10.1021/acs.biomac.5b00145

    Article  CAS  Google Scholar 

  38. Akhavan-Kharazian N, Izadi-Vasafi H (2019) Preparation and characterization of chitosan/gelatin/nanocrystalline cellulose/calcium peroxide films for potential wound dressing applications. Int J Biol Macromol 133:881–891. https://doi.org/10.1016/j.ijbiomac.2019.04.159

    Article  CAS  PubMed  Google Scholar 

  39. Mao JS, Liu HF, Yin YJ, Yao KD (2003) The properties of chitosan–gelatin membranes and scaffolds modified with hyaluronic acid by different methods. Biomaterials 24(9):1621–1629. https://doi.org/10.1016/s0142-9612(02)00549-5

    Article  CAS  PubMed  Google Scholar 

  40. Palma C, Contreras E, Urra J, Martínez MJ (2010) Eco-friendly technologies based on banana peel use for the decolourization of the dyeing process wastewater. Waste and Biomass Valorization 2(1):77–86. https://doi.org/10.1007/s12649-010-9052-4

    Article  CAS  Google Scholar 

  41. Vilardi G, Di Palma L, Verdone N (2018) Heavy metals adsorption by banana peels micro-powder: Equilibrium modeling by non-linear models. Chin J Chem Eng 26(3):455–464. https://doi.org/10.1016/j.cjche.2017.06.026

    Article  CAS  Google Scholar 

  42. Mahindrakar KV, Rathod VK (2018) Utilization of banana peels for removal of strontium (II) from water. Environ Technol Innov 11:371–383. https://doi.org/10.1016/j.eti.2018.06.015

    Article  Google Scholar 

  43. Happi Emaga T, Ronkart SN, Robert C, Wathelet B, Paquot M (2008) Characterisation of pectins extracted from banana peels (Musa AAA) under different conditions using an experimental design. Food Chem 108(2):463–471. https://doi.org/10.1016/j.foodchem.2007.10.078

    Article  CAS  PubMed  Google Scholar 

  44. Kamel NA, Abd El-Messieh SL, Saleh NM (2017) Chitosan/banana peel powder nanocomposites for wound dressing application: Preparation and characterization. Mater Sci Eng C Mater Biol Appl 72:543–550. https://doi.org/10.1016/j.msec.2016.11.104

    Article  CAS  PubMed  Google Scholar 

  45. Tunde-Akintunde TY, Akintunde BO (2004) Some physical properties of sesame seed. Biosys Eng 88(1):127–129. https://doi.org/10.1016/j.biosystemseng.2004.01.009

    Article  Google Scholar 

  46. Jan KC, Ho CT, Hwang LS (2009) Elimination and metabolism of sesamol, a bioactive compound in sesame oil, in rats. Mol Nutr Food Res 53(Suppl 1):S36-43. https://doi.org/10.1002/mnfr.200800214

    Article  PubMed  Google Scholar 

  47. ASTM (2005) Standard test method for water vapor transmission of materials (E96–05). PA, USA, Philadelphia

    Google Scholar 

  48. ASTM (2009) Standard test method for tensile properties of thin plastic sheeting (D882–09). PA, USA, Philadelphia

    Google Scholar 

  49. CLSI (2012) Performance standards for antimicrobial disk susceptibility tests, approved standard, 7th ed., CLSI document M02-A11. Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA

  50. Fotakis G, Timbrell JA (2006) In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 160(2):171–177. https://doi.org/10.1016/j.toxlet.2005.07.001

    Article  CAS  PubMed  Google Scholar 

  51. Loo Y, Wong YC, Cai EZ, Ang CH, Raju A, Lakshmanan A, Koh AG, Zhou HJ, Lim TC, Moochhala SM, Hauser CA (2014) Ultrashort peptide nanofibrous hydrogels for the acceleration of healing of burn wounds. Biomaterials 35(17):4805–4814. https://doi.org/10.1016/j.biomaterials.2014.02.047

    Article  CAS  PubMed  Google Scholar 

  52. Alsarra IA (2009) Chitosan topical gel formulation in the management of burn wounds. Int J Biol Macromol 45(1):16–21. https://doi.org/10.1016/j.ijbiomac.2009.03.010

    Article  CAS  PubMed  Google Scholar 

  53. Fakhreddin Hosseini S, Rezaei M, Zandi M, Ghavi FF (2013) Preparation and functional properties of fish gelatin-chitosan blend edible films. Food Chem 136(3–4):1490–1495. https://doi.org/10.1016/j.foodchem.2012.09.081

    Article  CAS  PubMed  Google Scholar 

  54. Staroszczyk H, Pielichowska J, Sztuka K, Stangret J, Kołodziejska I (2012) Molecular and structural characteristics of cod gelatin films modified with EDC and TGase. Food Chem 130(2):335–343. https://doi.org/10.1016/j.foodchem.2011.07.047

    Article  CAS  Google Scholar 

  55. Kizil R, Irudayaraj J, Seetharaman K (2002) Characterization of irradiated starches by using FT-Raman and FTIR Spectroscopy. J Agric Food Chem 50:3912–3918. https://doi.org/10.1021/jf011652p

    Article  CAS  PubMed  Google Scholar 

  56. Deng DH, Xu L, Ye ZH, Cui HF, Cai C-B, Yu X-P (2012) FTIR Spectroscopy and chemometric class modeling techniques for authentication of Chinese sesame oil. J Am Oil Chem Soc 89(6):1003–1009. https://doi.org/10.1007/s11746-011-2004-8

    Article  CAS  Google Scholar 

  57. Alaa El-Din G, Amer AA, Malsh G, Hussein M (2018) Study on the use of banana peels for oil spill removal. Alex Eng J 57(3):2061–2068. https://doi.org/10.1016/j.aej.2017.05.020

    Article  Google Scholar 

  58. Yi H, Wu LQ, Bentley WE, Ghodssi R, Rubloff GW, Culver JN, Payne GF (2005) Biofabrication with chitosan. Biomacromol 6:2881–2894. https://doi.org/10.1021/bm050410l

    Article  CAS  Google Scholar 

  59. Ma B, Qin A, Li X, Zhao X, He C (2014) Structure and properties of chitin whisker reinforced chitosan membranes. Int J Biol Macromol 64:341–346. https://doi.org/10.1016/j.ijbiomac.2013.12.015

    Article  CAS  PubMed  Google Scholar 

  60. Pereda M, Ponce AG, Marcovich NE, Ruseckaite RA, Martucci JF (2011) Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocoll 25(5):1372–1381. https://doi.org/10.1016/j.foodhyd.2011.01.001

    Article  CAS  Google Scholar 

  61. Devlieghere F, Vermeulen A, Debevere J (2004) Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol 21(6):703–714. https://doi.org/10.1016/j.fm.2004.02.008

    Article  CAS  Google Scholar 

  62. Mokbel MS, Hashinaga F (2005) Antibacterial and antioxidant activities of banana (Musa, AAA cv. Cavendish) fruits peel. Am J Biochem Biotechnol 1:125–131. https://doi.org/10.3844/ajbbsp.2005.125.131

    Article  Google Scholar 

  63. Boots AW, Haenen GR, Bast A (2008) Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 585(2–3):325–337. https://doi.org/10.1016/j.ejphar.2008.03.008

    Article  CAS  PubMed  Google Scholar 

  64. Cheng JC, Dai F, Zhou B, Yang L, Liu ZL (2007) Antioxidant activity of hydroxycinnamic acid derivatives in human low density lipoprotein: Mechanism and structure–activity relationship. Food Chem 104(1):132–139. https://doi.org/10.1016/j.foodchem.2006.11.012

    Article  CAS  Google Scholar 

  65. Vu HT, Scarlett CJ, Vuong QV (2018) Phenolic compounds within banana peel and their potential uses: A review. J Funct Foods 40:238–248. https://doi.org/10.1016/j.jff.2017.11.006

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Izadi-Vasafi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alborzi, Z., Izadi-Vasafi, H. & Ghayoumi, F. Wound dressings based on chitosan and gelatin containing starch, sesame oil and banana peel powder for the treatment of skin burn wounds. J Polym Res 28, 61 (2021). https://doi.org/10.1007/s10965-021-02427-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02427-y

Keywords

Navigation