Skip to main content
Log in

Synthesis, characterization and hydrolytic degradation of novel biodegradable poly(ester amide)s derived from Isosorbide and α-amino acids

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A series of poly(ester amide)s (PEAs) derived from the nontoxic building blocks, isosorbide, α-amino acids (L-phenylalanine, L-alanine, L-valine and glycine) and dicarboxylic acids was synthesized by interfiactial polymerization using a two-step method. The majority of PEAs were amorphous except for some glycine containing polymers. The PEAs showed good thermal stabilities and had Tg temperatures from 115.9 to 182.6 °C. The hydrolytic degradation behavior of the PEAs was followed by weight loss in both alkaline solution (pH 9) and under stimulated physiological conditions (pH 7.4) in phosphate buffer saline solution at 37 °C. The polymers with hydrophobic pendent or rigid dicarboxylic acid groups prevent degrading media from penetration into the polymer bulk leading to slow degradation rate. The monomers synthesized were characterized by FTIR, 1H and 13C NMR spectroscopy, the PEAs structures were confirmed by FTIR, 1H and 13C NMR spectroscopy and their thermal properties were studied by TGA and DSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798. https://doi.org/10.1016/j.progpolymsci.2007.05.017

    Article  CAS  Google Scholar 

  2. Okada M (2002) Chemical syntheses of biodegradable polymers. Prog Polym Sci 27:87–133. https://doi.org/10.1016/S0079-6700(01)00039-9

    Article  CAS  Google Scholar 

  3. Shivam P (2016) Recent developments on biodegradable polymers and their future trends. Int Res J Sci Eng 4:17–26

    CAS  Google Scholar 

  4. Vroman I, Tighzert L, Vroman I, Tighzert L (2009) Biodegradable Polymers. Materials (Basel) 2:307–344. https://doi.org/10.3390/ma2020307

    Article  CAS  Google Scholar 

  5. Tian H, Tang Z, Zhuang X, Chen X, Jing X (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37:237–280. https://doi.org/10.1016/j.progpolymsci.2011.06.004

    Article  CAS  Google Scholar 

  6. Lasprilla AJR, Martinez GAR, Lunelli BH, Jardini AL, Filho RM (2012) Poly-lactic acid synthesis for application in biomedical devices — a review. Biotechnol Adv 30:321–328. https://doi.org/10.1016/j.biotechadv.2011.06.019

    Article  CAS  PubMed  Google Scholar 

  7. Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci N (2018) PCL and PCL-based materials in biomedical applications. J Biomater Sci Polym Ed 29:863–893. https://doi.org/10.1080/09205063.2017.1394711

    Article  CAS  PubMed  Google Scholar 

  8. Fonseca AC, Gil MH, Simões PN (2014) Biodegradable poly(ester amide)s - a remarkable opportunity for the biomedical area: review on the synthesis, characterization and applications. Prog Polym Sci 39:1291–1311. https://doi.org/10.1016/j.progpolymsci.2013.11.007

    Article  CAS  Google Scholar 

  9. Rodriguez-Galan A, Franco L, Puiggali J (2011) Degradable poly(ester amide)s for biomedical applications. Polymers (Basel) 3:65–99. https://doi.org/10.3390/polym3010065

    Article  CAS  Google Scholar 

  10. Díaz A, Katsarava R, Puiggalí J, Díaz A, Katsarava R, Puiggalí J (2014) Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)s. Int J Mol Sci 15:7064–7123. https://doi.org/10.3390/ijms15057064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Winnacker M, Rieger B (2016) Poly(ester amide)s: recent insights into synthesis, stability and biomedical applications. Polym Chem 7:7039–7046. https://doi.org/10.1039/C6PY01783E

    Article  CAS  Google Scholar 

  12. Rodríguez-Galán A, Franco L, Puiggalí J (2011) Biodegradable poly(ester amide)s: synthesis and applications

  13. Han S-I, Kim BS, Kang SW, Shirai H, Im SS (2003) Cellular interactions and degradation of aliphatic poly(ester amide)s derived from glycine and/or 4-amino butyric acid. Biomaterials 24:3453–3462. https://doi.org/10.1016/S0142-9612(03)00223-0

    Article  CAS  PubMed  Google Scholar 

  14. Sun H, Cheng R, Deng C, Meng F, Dias AA, Hendriks M, Feijen J, Zhong Z (2015) Enzymatically and reductively degradable α-amino acid-based poly(ester amide)s: synthesis, cell compatibility, and intracellular anticancer drug delivery. Biomacromolecules 16:597–605. https://doi.org/10.1021/bm501652d

    Article  CAS  PubMed  Google Scholar 

  15. Tsitlanadze G, Kviria T, Katsarava R (2004) In vitro enzymatic biodegradation of amino acid based poly(ester amide )s biomaterials. J Mater Sci Mater Med 15:185–190

    Article  CAS  Google Scholar 

  16. Ghosal K, Latha MS, Thomas S (2014) Poly(ester amides) (PEAs) – scaffold for tissue engineering applications. Eur Polym J 60:58–68. https://doi.org/10.1016/J.EURPOLYMJ.2014.08.006

    Article  CAS  Google Scholar 

  17. Asín L, Armelin E, Montané J, Rodríguez-Galán A, Puiggalí J (2001) Sequential poly(ester amide)s based on glycine, diols, and dicarboxylic acids: thermal polyesterification versus interfacial polyamidation. Characterization of polymers containing stiff units. J Polym Sci Part A Polym Chem 39:4283–4293. https://doi.org/10.1002/pola.10082

    Article  Google Scholar 

  18. Katsarava R, Beridze V, Arabuli N, Kharadze D, Chu C-C, Won CY (1999) Amino acid-based bioanalogous polymers. Synthesis, and study of regular poly(ester amide)s based on bis(α-amino acid) α,ω-alkylene diesters, and aliphatic dicarboxylic acids. J Polym Sci Part A Polym Chem 37:391–407. https://doi.org/10.1002/(SICI)1099-0518(19990215)37:4<391::AID-POLA3>3.0.CO;2-E

    Article  CAS  Google Scholar 

  19. Gomurashvili Z, Kricheldorf HR, Katsarava R (2000) Amino acid based bioanalogous polymers. Synthesis and study of new poly(ester amide)s composed of hydrophobic Α-amino acids and dianhydrohexitoles. J Macromol Sci Part A 37:215–227. https://doi.org/10.1081/MA-100101089

    Article  Google Scholar 

  20. Liu C, Jia W, Qian Z, Huang M, Gu Y, Chao G, Gou M, Gong C, Deng H, Lei K, Huang A, Tu M (2007) In vitro degradation behavior of polyesteramide copolymer fiber based on 6-aminocaproic acid, adipic acid, and 1,6-hexane diol. J Polym Res 14:31–37. https://doi.org/10.1007/s10965-006-9077-3

    Article  CAS  Google Scholar 

  21. Okada M, Yamada M, Yokoe M, Aoi K (2001) Biodegradable polymers based on renewable resources. V. Synthesis and biodegradation behavior of poly(ester amide)s composed of 1,4:3,6-dianhydro-D-glucitol, α-amino acid, and aliphatic dicarboxylic acid units. J Appl Polym Sci 81:2721–2734. https://doi.org/10.1002/app.1718

    Article  CAS  Google Scholar 

  22. Nagata M (1999) Synthesis and enzymatic degradation of poly(ester-amide) stereocopolymers derived from alanine. Macromol Chem Phys 200:2059–2064. https://doi.org/10.1002/(sici)1521-3935(19990901)200:9<2059::aid-macp2059>3.0.co;2-n

    Article  CAS  Google Scholar 

  23. Paredes N, Rodriguez-Galán A, Puiggalí J (1998) Synthesis and characterization of a family of biodegradable poly(ester amide)s derived from glycine. J Polym Sci Part A Polym Chem 36:1271–1282. https://doi.org/10.1002/(SICI)1099-0518(199806)36:8<1271::AID-POLA10>3.0.CO;2-3

    Article  CAS  Google Scholar 

  24. Knight DK, Gillies ER, Mequanint K (2011) Strategies in functional poly(ester amide) syntheses to study human coronary artery smooth muscle cell interactions. Biomacromolecules 12:2475–2487. https://doi.org/10.1021/bm200149k

    Article  CAS  PubMed  Google Scholar 

  25. Del Valle LJ, Roca D, Franco L, Puiggalí J, Rodríguez-Galán A (2011) Preparation and release study of ibuprofen-loaded porous matrices of a biodegradable poly(ester amide) derived from L-alanine units. J Appl Polym Sci 122:1953–1967. https://doi.org/10.1002/app.34017

    Article  CAS  Google Scholar 

  26. Soleimani A, Drappel S, Carlini R, Goredema A, Gillies ER (2014) Structure-property relationships for a series of poly(ester amide)s containing amino acids. Ind Eng Chem Res 53:1452–1460. https://doi.org/10.1021/ie4035219

    Article  CAS  Google Scholar 

  27. Karimi P, Rizkalla AS, Mequanint K (2010) Versatile biodegradable poly(ester amide)s derived from α-amino acids for vascular tissue engineering. Materials (Basel) 3:2346–2368. https://doi.org/10.3390/ma3042346

    Article  CAS  PubMed Central  Google Scholar 

  28. Paredes N, Rodriguez-Galán A, Puiggalí J, Peraire C (1998) Studies on the biodegradation and biocompatibility of a new poly(ester amide) derived from L-alanine. J Appl Polym Sci 69:1537–1549. https://doi.org/10.1002/(SICI)1097-4628(19980822)69:8<1537::AID-APP8>3.0.CO;2-D

    Article  CAS  Google Scholar 

  29. Fonseca AC, Coelho JFJ, Valente JFA, Correia TR, Correia IJ, Gil MH, Simões PN (2013) Poly(ester amide)s based on (L)-lactic acid oligomers and α-amino acids: influence of the α-amino acid side chain in the poly(ester amide)s properties. J Biomater Sci Polym Ed 24:1391–1409. https://doi.org/10.1080/09205063.2012.762293

    Article  CAS  PubMed  Google Scholar 

  30. Spiridon I, Popa VI (2008) Hemicelluloses: major sources, properties and applications

  31. Fenouillot F, Rousseau A, Colomines G, Saint-Loup R, Pascault JP (2010) Polymers from renewable 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): a review. Prog Polym Sci 35:578–622. https://doi.org/10.1016/j.progpolymsci.2009.10.001

    Article  CAS  Google Scholar 

  32. Celli A, Gandini A, Gioia C, Lacerda TM, Vannini M, Colonna M (2016) Polymers from pristine and modified natural monomers. Chem fuels from bio-based build blocks 275–314. https://doi.org/10.1002/9783527698202.ch12

  33. Jung YJ, Kim YS, Ryu H (2012) Methods for distilling and manufacturing anhydrosugar alcohols. WO 2012081785:A1

    Google Scholar 

  34. Goodwin JC, Hodge JE, Weisleder D (1980) Preparation of bicyclic hexitol anhydrides by using acidic cation-exchange resin in a binary solvent. p13C-N.m.r. spectroscopy confirms configurational inversion in chloride displacement of methanesulfonate in isomannide and isosorbide derivatives. Carbohydr Res 79:133–141. https://doi.org/10.1016/S0008-6215(00)85138-1

    Article  CAS  Google Scholar 

  35. Armelin E, Franco L, Rodríguez-Galán A, Puiggalí J (2002) Study on the degradability of poly(ester amide)s related to nylons and polyesters 6,10 or 12,10. Macromol Chem Phys 203:48–58. https://doi.org/10.1002/1521-3935(20020101)203:1<48::AID-MACP48>3.0.CO;2-E

    Article  CAS  Google Scholar 

  36. Fonseca AC, Serra AC, Coelho JFJ, Gil MH, Simões PN (2013) Novel poly(ester amide)s from glycine and L-lactic acid by an easy and cost-effective synthesis. Polym Int 62:736–743. https://doi.org/10.1002/pi.4356

    Article  CAS  Google Scholar 

  37. Kaczmarczyk B (1998) FTi.r. study of hydrogen bonds in aliphatic polyesteramides. Polymer (Guildf) 39:5853–5860. https://doi.org/10.1016/S0032-3861(98)00024-X

    Article  CAS  Google Scholar 

  38. Kaczmarczyk B, Sek D (1995) Hydrogen bonds in poly(ester amide)s and their model compounds. Polymer (Guildf) 36:5019–5025. https://doi.org/10.1016/0032-3861(96)81631-4

    Article  CAS  Google Scholar 

  39. Dhumal SS, Suresh AK (2010) Understanding interfacial polycondensation: experiments on polyurea system and comparison with theory. Polymer (Guildf) 51:1176–1190. https://doi.org/10.1016/j.polymer.2010.01.004

    Article  CAS  Google Scholar 

  40. Dhumal SS, Wagh SJ, Suresh AK (2008) Interfacial polycondensation - modeling of kinetics and film properties. J Memb Sci 325:758–771

    Article  CAS  Google Scholar 

  41. Zuo J, Li S, Bouzidi L, Narine SS (2011) Thermoplastic polyester amides derived from oleic acid. Polymer (Guildf) 52:4503–4516. https://doi.org/10.1016/j.polymer.2011.08.002

    Article  CAS  Google Scholar 

  42. Armelin E, Paracuellos N, Rodríguez-Galán A, Puiggalí J (2001) Study on the degradability of poly(ester amide)s derived from the α-amino acids glycine, and L-alanine containing a variable amide/ester ratio. Polymer (Guildf) 42:7923–7932. https://doi.org/10.1016/S0032-3861(01)00315-9

    Article  CAS  Google Scholar 

  43. Helder J, Dijkstra PJ, Feijen J (1990) In vitro degradation of glycine/DL-lactic acid copolymers. J Biomed Mater Res 24:1005–1020. https://doi.org/10.1002/jbm.820240804

    Article  CAS  PubMed  Google Scholar 

  44. Zhang H, He Y, Li S, Liu X (2005) Synthesis and hydrolytic degradation of aliphatic polyesteramides branched by glycerol. Polym Degrad Stab 88:309–316. https://doi.org/10.1016/j.polymdegradstab.2004.11.005

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bassam A. Sweileh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Tayyem, B.H., Sweileh, B.A. Synthesis, characterization and hydrolytic degradation of novel biodegradable poly(ester amide)s derived from Isosorbide and α-amino acids. J Polym Res 27, 120 (2020). https://doi.org/10.1007/s10965-020-2021-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-2021-0

Keywords

Navigation