Skip to main content
Log in

Effect of functionalized multi-walled carbon nanotubes on thermal and mechanical properties of acrylonitrile butadiene styrene nanocomposite

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Acrylonitrile butadiene styrene (ABS) polymer is used in different areas of engineering based applications, especially in the aviation and automobile industry. It is highly desirable to improve the thermal and mechanical properties of this polymer to enhance its current applicability and to widen its scope for variety of advanced applications. Fabrication of polymer nanocomposite by reinforcing the polymer with nanofiller is one of the key techniques used worldwide to enhance the properties of polymer. In this paper, we have fabricated nanocomposite of ABS using facile solution blending technique with functionalized multi-walled carbon nanotubes (MWCNT) as nanofiller. The weight of functionalized MWCNT in ABS was varied from 1 wt% to 5 wt%. Fourier-transform infrared spectroscopy (FTIR) and X-Ray diffraction (XRD) were used for characterization of functional group and structural analysis in functionalized MWCNT. The distribution and confirmation of functionalized MWCNT in ABS was analyzed using field emission scanning electron microscope (FESEM) and Raman spectroscopy. Thermal characterization showed considerable improvement in thermal degradation stability and significant reduction in thermal expansion of ABS nanocomposite in comparison to pure ABS. Mechanical characterization using nanoindentation techniques also showed significant enhancement in mechanical properties of ABS nanocomposite in comparison to pure ABS. The 5 wt% nanocomposite showed improvement of 95% and 91% in elastic modulus and hardness respectively in comparison to pure ABS. Dynamic mechanical properties average storage modulus and average hardness improved by 148% and 369% respectively for 5 wt% nanocomposite in comparison to pure ABS. These improved thermal and mechanical properties of ABS using functionalized MWCNT will lead to wider and enhanced applicability of ABS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rahmat M, Hubert P (2011) Carbon nanotube-polymer interactions in nanocomposites: a review. Compos Sci Technol 72(1):72–84

    CAS  Google Scholar 

  2. Dhatarwal P, Sengwa RJ (2019) Impact of PVDF/PEO blend composition on the β-phase crystallization and dielectric properties of silica nanoparticles incorporated polymer nanocomposites. J Polym Res 26(8):196

    Google Scholar 

  3. Ren P-G, Si X-H, Sun Z-F, Ren F, Pei L, Hou S-Y (2016) Synergistic effect of BN and MWCNT hybrid fillers on thermal conductivity and thermal stability of ultra-high-molecular-weight polyethylene composites with a segregated structure. J Polym Res 23(2):21

    Google Scholar 

  4. Al-Saleh MH, Al-Anid HK, Hussain YA (2013) CNT/ABS nanocomposites by solution processing: proper dispersion and selective localization for low percolation threshold. Compos Part A Appl Sci Manuf 46(1):53–59

    CAS  Google Scholar 

  5. Al-Saleh MH, Al-Saidi BA, Al-Zoubi RM (2016) Experimental and Theoretical Analysis of the Mechanical and Thermal Properties of Carbon Nanotube/Acrylonitrile-Styrene-Butadiene Nanocomposites. Polymer (Guildf) 89:12–17

    CAS  Google Scholar 

  6. Weng Z, Wang J, Senthil T, Wu L (2016) Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Mater Des 102:276–283

    CAS  Google Scholar 

  7. Iijima S (2002) Carbon nanotubes: past, present, and future. Physica B Condens. Matter 323:1–5

  8. Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A Appl Sci Manuf 41(10):1345–1367

    Google Scholar 

  9. Pokropivny VV, Skorokhod VV (2007) Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater Sci Eng, C 27(5-8):990–993

  10. Raghunath S, Kumar S, Samal SK, Mohanty S, Nayak SK (2018) PLA/ESO/MWCNT nanocomposite: a study on mechanical, thermal and electroactive shape memory properties. J Polym Res 25(5):126

    Google Scholar 

  11. Aqel A, El-Nour KMMA, Ammar RAA, Al-Warthan A (2012) Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arab J Chem 5(1):1–23

    CAS  Google Scholar 

  12. Kong Q, Luo Z, Wang Y, Wang B (2018) Fabrication of super-stretchable and electrical conductive membrane of spandex/multi-wall carbon nanotube/reduced graphene oxide composite. J Polym Res 25(11):231

    Google Scholar 

  13. Armstrong G (2015) An introduction to polymer nanocomposites. Eur J Phys 36(6):63001

    Google Scholar 

  14. Moaseri E, Hasanabadi S, Maghrebi M, Baniadam (2015) Improvements in fatigue life of amine-functionalized multi-walled carbon nanotube-reinforced epoxy composites: effect of functionalization degree and microwave-assisted precuring. J Compos Mater 49(16):1961–1969

    CAS  Google Scholar 

  15. Le VT, Ngo CL, Le QT, Ngo TT, Nguyen DN, Vu MT (2013) Surface modification and functionalization of carbon nanotube with some organic compounds. Adv Nat Sci Nanosci Nanotechnol. 4(3):35017

    Google Scholar 

  16. Chen R, Ye C, Xin Z, Zhao S, Xia J, Meng X (2018) The effects of octadecylamine functionalized multi-wall carbon nanotubes on the conductive and mechanical properties of ultra-high molecular weight polyethylene. J Polym Res 25(6):135

    Google Scholar 

  17. Lin Z-I et al (2017) The effects of MWCNT length on the mechanical, crystallization and electromagnetic interference shielding effectiveness of PP/MWCNT composites. J Polym Res 24(2):32

    Google Scholar 

  18. Zhang C, Zhu F, Wang Z, Meng L, Liu Y (2012) Amino functionalization of multiwalled carbon nanotubes by gamma ray irradiation and its epoxy composites. Polym Compos 33(2):267–274

    CAS  Google Scholar 

  19. Ma PC, Bin Zheng Q, Mäder E, Kim JK (2012) Behavior of load transfer in functionalized carbon nanotube/epoxy nanocomposites. Polym (United Kingdom) 53(26):6081–6088

    CAS  Google Scholar 

  20. Hameed A, Islam M, Ahmad I, Mahmood N, Saeed S, Javed H (2015) Thermal and mechanical properties of carbon nanotube/epoxy nanocomposites reinforced with pristine and functionalized multiwalled carbon nanotubes. Polym Compos 36(10):1891–1898

    CAS  Google Scholar 

  21. Jabeen S, Gul S, Kausar  A, Muhammad  B, Nawaz M, Saud  KM, Farooq M (2019) A facile route for the synthesis of mechanically strong MWCNTs/NDs nanobifiller filled polyacrylate composites. Polymer-Plastics Technology and Materials 58(16):1810–1827

  22. De Menezes BRC, Ferreira FV (2018) Effects of octadecylamine functionalization of carbon nanotubes on dispersion , polarity , and mechanical properties of CNT / HDPE nanocomposites. J Mater Sci 53(20):14311–14327

    Google Scholar 

  23. Rider AN, An Q, Brack N, Thostenson ET (2015) Polymer nanocomposite - fiber model interphases: influence of processing and interface chemistry on mechanical performance. Chem Eng J 269:121–134

    CAS  Google Scholar 

  24. Mittal G, Dhand V, Rhee KY, Park S, Lee WR (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25

    CAS  Google Scholar 

  25. Gunasekaran SG, Rajakumar K, Alagar M, Dharmendirakumar M (2013) Siloxane core dianhydride modified ether linked cyclohexyl diamine based multi-walled carbon nanotube reinforced polyimide (MWCNT/PI) nanocomposites. J Polym Res 21(1):342

    Google Scholar 

  26. Wu G-H, Liu S-Q, Wu X-Y, Ding X-M (2016) Influence of MWCNTs modified by silane coupling agent KH570 on the properties and structure of MWCNTs/PLA composite film. J Polym Res 23(8):155

    Google Scholar 

  27. Jyoti J, Basu S, Singh BP, Dhakate SR (2015) Superior mechanical and electrical properties of multiwall carbon nanotube reinforced acrylonitrile butadiene styrene high performance composites. Compos Part B Eng 83:58–65

    CAS  Google Scholar 

  28. Jindal P, Jyoti J, Kumar N (2016) Mechanical characterisation of ABS/MWCNT composites under static and dynamic loading conditions Prashant. J Mech Eng Sci 10(3):2288–2299

    CAS  Google Scholar 

  29. Kravchenko O, Qian X, Kravchenko S, Misiego R, Pipes B, Manas-Zloczower I (Jun. 2017) Role of hierarchical morphology of helical carbon nanotube bundles on thermal expansion of polymer nanocomposites. J Mater Res 32(14):2738–2746

    CAS  Google Scholar 

  30. Benzait Z, Trabzon L (2018) A review of recent research on materials used in polymer–matrix composites for body armor application. J Compos Mater 52(23):3241–3263

    CAS  Google Scholar 

  31. Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35(7):837–867

    CAS  Google Scholar 

  32. Sen P, Suresh K, Vinoth Kumar R, Kumar M, Pugazhenthi G (2016) A simple solvent blending coupled sonication technique for synthesis of polystyrene (PS)/multi-walled carbon nanotube (MWCNT) nanocomposites: effect of modified MWCNT content. J Sci Adv Mater Devices 1(3):311–323

    Google Scholar 

  33. Kapoor S, Goyal M, Jindal P (2017) Effect of multi-walled carbon nanotubes (MWCNT) on mechanical properties of acrylonitrile butadiene styrene (ABS) Nano-composite. Indian J Sci Technol 10(17):1–6

    Google Scholar 

  34. Kapoor S, Goyal M, Jindal P (2019) Enhanced thermal, static, and dynamic mechanical properties of multi-walled carbon nanotubes-reinforced acrylonitrile butadiene styrene nanocomposite. J Thermoplast Compos Mater. https://doi.org/10.1177/0892705719886012

  35. Aljubury IM, Farhan AA, Mussa MA (2015) Experimental study of interior temperature distribution inside parked automobile cabin. J Eng. 21(3):1–10

  36. Horak J, Schmerold I, Wimmer K, Schauberger G (2017) Cabin air temperature of parked vehicles in summer conditions: life-threatening environment for children and pets calculated by a dynamic model. Theor Appl Climatol 130(1–2):107–118

    Google Scholar 

  37. Sun J et al (2014) Quasi-static and dynamic nanoindentation of some selected biomaterials. J Bionic Eng 11(1):144–150

    Google Scholar 

  38. Zarrabi H, Ehsan M, Vatanpour V, Shockravi A, Safarpour M (2016) Improvement in desalination performance of thin film nanocomposite nano filtration membrane using amine-functionalized multiwalled carbon nanotube. DES 394:83–90

  39. Rahimi Z, Zinatizadeh AAL, Zinadini S (2015) Journal of industrial and engineering chemistry preparation of high antibiofouling amino functionalized MWCNTs / PES nanocomposite ultrafiltration membrane for application in membrane bioreactor. J Ind Eng Chem 29:366–374

    CAS  Google Scholar 

  40. Prasanna BP, Avadhani DN, Chaitra K, Nagaraju N, Kathyayini N (2018) Synthesis of polyaniline/MWCNTs by interfacial polymerization for superior hybrid supercapacitance performance. J Polym Res 25(5):123

    Google Scholar 

  41. Roy S, Srivastava SK, Mittal V (2016) Facile noncovalent assembly of MWCNT-LDH and CNF-LDH as reinforcing hybrid fillers in thermoplastic polyurethane/nitrile butadiene rubber blends. J Polym Res 23(2):36

    Google Scholar 

  42. Atif R, Inam F (2016) Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers. Beilstein J Nanotechnol 7(1):1174–1196

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lenz R, Enders K, Stedmon CA, Mackenzie DMA, Gissel T (2015) A critical assessment of visual identi fi cation of marine microplastic using Raman spectroscopy for analysis improvement. Mar Pollut Bull 100(1):82–91

    CAS  PubMed  Google Scholar 

  44. Cha J, Jin S, Shim JH, Park CS, Ryu HJ, Hong SH (2016) Functionalization of carbon nanotubes for fabrication of CNT/epoxy nanocomposites. Mater Des 95:1–8

    CAS  Google Scholar 

  45. Duh Y-S, Ho T-C, Chen J-R, Kao C-S (2010) Study on exothermic oxidation of acrylonitrile-butadiene-styrene (ABS) resin powder with application to ABS processing safety. Polymers (Basel) 2(3):174–187

    CAS  Google Scholar 

  46. Shimada J, Kabuki K (1968) The mechanism of oxidative degradation of ABS resin. Part I. the mechanism of thermooxidative degradation. J Appl Polym Sci 12(4):655–669

    CAS  Google Scholar 

  47. Silva WM et al (2012) Surface properties of oxidized and aminated multi-walled carbon nanotubes. J Braz Chem Soc 23(6):1078–1086

    CAS  Google Scholar 

  48. Kashiwagi JDT, Grulke E, Hilding J, Harris R, Awad W (2002) Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites. Macromol Rapid Commun 23:761–765

    CAS  Google Scholar 

  49. Kashiwagi JST, Grulke E, Hilding J, Groth K, Harris R, Butler K, Kharchenko JDS (2004) Thermal and flammability properties of polypropylene/ carbon nanotube nanocomposites. Polymer (Guildf) 45:4227–4239

    CAS  Google Scholar 

  50. M. Kumar, P. Devi, and V. D. Shivling, Thermal stability and electrochemical properties of PVP-protected Ru nanoparticles synthesized at room temperature, Mater Res Express, vol. 4, no. 8, 2017

  51. Cheng H, Chen M (2017) Effect of functionalization of multiwalled carbon nanotubes with aminated poly(ether sulfone) on thermal and mechanical properties of poly(ether ether ketone) nanocomposites. High Perform Polym 29(7):857–868

    CAS  Google Scholar 

  52. Shirasu K, Yamamoto G, Tamaki I, Ogasawara T, Shimamura Y, Inoue Y, Hashida T (2015) Negative axial thermal expansion coefficient of carbon nanotubes: experimental determination based on measurements of coefficient of thermal expansion for aligned carbon nanotube reinforced epoxy composites. Carbon 95:904–909

  53. Vivekchand SRC, Ramamurty U, Rao CNR (2006) Mechanical properties of inorganic nanowire reinforced polymer–matrix composites. Nanotechnology 17(11):S344

    Google Scholar 

  54. Eldessouki M, Shady E, Gowayed Y (2015) Mechanical properties of epoxy nanocomposites. In: Seventh International Conference on NanoCon, Brno, Czech Republic 1:1–8

  55. Bhuyan B, Srivastava SK, Pionteck J (2017) MWCNT/Hectorite hybrid filled acrylonitrile butadiene rubber/ ethylene-co-vinyl acetate blend nanocomposites: preparation and properties. J Polym Res 24(9):150

    Google Scholar 

  56. Jindal P, Naresh R, Navin Y (2017) Dynamic mechanical characterization of PC / MWCNT composites under variable temperature conditions. Iran Polym J 26(6):445–452

    CAS  Google Scholar 

  57. Atieh MA (2011) Effect of functionalize carbon nanotubes with amine functional group on the mechanical and thermal properties of styrene butadiene rubber. J Thermoplast Compos Mater 24(5):613–624

    CAS  Google Scholar 

  58. Jindal P, Goyal M, Kumar N (2014) Mechanical characterization of multiwalled carbon nanotubes-polycarbonate composites. Mater Des 54:864–868

    CAS  Google Scholar 

  59. Jindal P, Sain M, Kumar N (2015) Mechanical characterization of PMMA/MWCNT composites under static and dynamic loading conditions. Mater Today Proc 2(4–5):1364–1372

    Google Scholar 

  60. Konnola R, Nair CPR, Joseph K (2016) High strength toughened epoxy nanocomposite based on poly(ether sulfone)-grafted multi-walled carbon nanotube. Polym Adv Technol 27(1):82–89

    CAS  Google Scholar 

  61. Brancato V, Visco A, Pistone A, Piperno A, Iannazzo D (2013) Effect of functional groups of multi-walled carbon nanotubes on the mechanical, thermal and electrical performance of epoxy resin based nanocomposites. J Compos Mater 47(24):3091–3103

    Google Scholar 

  62. Mallakpour S, Soltanian S (2014) Chemical modification of MWCNTs with 5-aminoisophthalic acid and its effects on the thermal and morphological properties of chiral poly (ester-imide)/MWCNT nanocomposites having N-trimellitylimido-L-isoleucine moieties. J Polym Res 21(9):553

    Google Scholar 

  63. Palacios JA, Ganesan R (2019) Enhancement of stiffness and dynamic mechanical properties of polymers using single-walled-carbon-nanotube -- a multiscale finite element formulation study. J Polym Res 26(5):124

    Google Scholar 

Download references

Acknowledgements

The author is thankful to TEQIP-III for funding this research work. The author is also thankful for the financial assitance provided by Design and innovation centre (DIC) under the project (17-11/2015-PN-1). The authors would also express their sincere thanks to Dr. Navin Kumar, Department of Mechanical Engineering, IIT Ropar for technical support during this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Jindal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapoor, S., Goyal, M. & Jindal, P. Effect of functionalized multi-walled carbon nanotubes on thermal and mechanical properties of acrylonitrile butadiene styrene nanocomposite. J Polym Res 27, 40 (2020). https://doi.org/10.1007/s10965-020-2014-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-2014-z

Keywords

Navigation