Skip to main content
Log in

Clickable perfluorocyclobutyl aryl ether polymers bearing azido groups: synthesis and post-functionalization

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A novel class of clickable perfluorocyclobutyl (PFCB) aryl ether polymers containing azido groups (APFCB polymers) is reported. The thermal cyclopolymerization reaction of 2-methyl-1,4-bis(1,2,2-trifluorovinyloxy)benzene was first optimized by DSC, GPC and 19F NMR, and the matrix polymer (PFCB-Me) with high average molecular weights (Mw = 13.61 × 104 g/mol) and molecular weight distributions (Mw/Mn = 1.68) was obtained. Then, a series of APFCB polymers with tunable azido contents were successfully prepared from the PFCB-Me polymer by bromination and azidation. Post-functionalization of APFCB polymers with sulfonate functionality was accomplished by Cu(I)-catalyzed azide-alkyne cycloaddition click chemistry. The prepared polymers were characterized by FT-IR and NMR spectra, while the thermal properties and solubility were also investigated. The APFCB polymers exhibit glass transition temperatures in the range of 67 °C to 73 °C and good solubility in common organic solvents. This work suggests that the designed APFCB polymers may be a promising versatile platform for developing new functional PFCB aryl ether polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Narayanan G, Farajidizaji B, Smith DW et al (2020) Semi-fluorinated aromatic ether polymers via step-growth polymerization of fluoroalkenes. In: Ameduri B, Fomin S (eds) Opportunities for fluoropolymers: Synthesis, characterization, processing, simulation and recycling. Elsevier, Amsterdam, p 1–25

  2. Zhou J, Tao Y, Chen X, Chen X, Fang L, Wang Y, Sun J, Fang Q et al (2019) Perfluorocyclobutyl-based polymers for functional materials. Mater Chem Front 3:1280–1301

    Article  Google Scholar 

  3. Jin J, Topping CM, Chen S, Ballato J, Foulger SH, Smith DW et al (2004) Synthesis and comparison of CF3 versus CH3 substituted perfluorocyclobutyl (PFCB) networks for optical applications. J Polym Sci Part A: Polym Chem 42:5292–5300

    Article  Google Scholar 

  4. Wang J, Zhou J, Jin K, Wang L, Sun J, Fang Q et al (2017) A new fluorinated polysiloxane with good optical properties and low dielectric constant at high frequency based on easily available tetraethoxysilane (TEOS). Macromolecules 50:9394–9402

    Article  Google Scholar 

  5. Sun Y, Wang M, Gong X, Seo JH, Hsu BBY, Wudl F, Heeger AJ et al (2011) Polymer bulk heterojunction solar cells: function and utility of inserting a hole transport and electron blocking layer into the device structure. J Mater Chem 21:1365–1367

    Article  Google Scholar 

  6. Kim DJ, Chang BJ, Kim JH, Lee SB, Joo HJ et al (2008) Sulfonated poly(fluorenyl ether) membranes containing perfluorocyclobutane groups for fuel cell applications. J Membrane Sci 325:217–222

    Article  Google Scholar 

  7. Marestin C, Thiry X, Rojo S, Chauveau E, Mercier R et al (2017) Synthesis of sulfonate ester and sulfonic acid-containing poly(arylene perfluorocyclobutane)s  (PFCB) by direct copolymerization of a sulfonate ester-containing precursor. Polymer 108:179–192

    Article  Google Scholar 

  8. Souzy R, Ameduri B, Boutevin B et al (2004) Synthesis and (co)polymerization of monofluoro, difluoro, trifluorostyrene and ((trifluorovinyl)oxy)benzene. Prog Polym Sci 29:75–106

    Article  Google Scholar 

  9. Kong L, Qi T, Ren Z, Jin Y, Li Y, Cheng Y, Xiao F et al (2016) High-performance intrinsic low-k polymer via the synergistic effect of its three units: adamantyl, perfluorocyclobutylidene and benzocyclobutene. RSC Adv 6:68560–68567

    Article  Google Scholar 

  10. Zhou J, Fang L, Wang J, Sun J, Jin K, Fang Q et al (2016) Post-functionalization of novolac resins by introducing thermo-crosslinkable −OCF=CF2 groups as the side chains: a new strategy for production of thermosetting polymers without releasing volatiles. Polym Chem 7:4313–4316

    Article  Google Scholar 

  11. Zhu Y, Chen H, He C et al (2011) Novel fluorinated polymers bearing phosphonated side chains: synthesis, characterization and properties. J Polym Res 18:1409–1416

    Article  Google Scholar 

  12. Wang Y, Luo Y, Jin K, Sun J, Fang Q et al (2017) A spiro-centered thermopolymerizable fluorinated macromonomer: synthesis and conversion to the high performance polymer. RSC Adv 7:18861–18866

    Article  Google Scholar 

  13. Zhou Y, Qing FL et al (2008) Novel fluorinated poly(aryl ether)s derived from 1,2-bis(4-(4-fluorobenzoyl)phenoxy)-hexafluorocyclobutane. J Fluorine Chem 129:498–502

    Article  Google Scholar 

  14. Qian G, Smith DW, Benicewicz BC et al (2009) Synthesis and characterization of high molecular weight perfluorocyclobutyl-containing polybenzimidazoles (PFCB-PBI) for high temperature polymer electrolyte membrane fuel cells. Polymer 50:3911–3916

    Article  Google Scholar 

  15. Jia M, Li Y, He C, Huang X et al (2016) Soluble perfluorocyclobutyl aryl ether-based polyimide for high-performance dielectric material. ACS Appl Mater Interfaces 8:26352–26358

    Article  Google Scholar 

  16. Liu H, Zhang S, Li Y, Yang D, Hu J, Huang X et al (2010) A novel perfluorocyclobutyl aryl ether-based graft copolymer via 2-methyl-1,4-bistrifluorovinyloxybenzene and styrene. Polymer 51:5198–5206

    Article  Google Scholar 

  17. Liu H, Zhang S, Li Y, Yang D, Hu J, Huang X et al (2011) A novel fluorine-containing graft copolymer bearing perfluorocyclobutyl aryl ether-based backbone and poly(methyl methacrylate) side chains. J Polym Sci Part A: Polym Chem 49:11–22

    Article  Google Scholar 

  18. Hong J, Bi L, Li S, Jia G, Zhu Y, Li G, Huang Z et al (2016) Design and synthesis of reactive polymers containing perfluorocyclobutyl (PFCB) and hydroxyl moieties for post-functionalization of PFCB aryl ether polymers. Polymer 93:37–43

    Article  Google Scholar 

  19. Bi L, Hong J, Li S, Zhu Z, Zhu Y et al (2019) Post-functionalization of perfluorocyclobutyl aryl ether polymers with a novel perfluorosulfonated side chain precursor. J Polym Res. https://doi.org/10.1007/s10965-019-1782-9

    Article  Google Scholar 

  20. Lu G, Jiang X, Li Y, Lv X, Huang X et al (2015) Synthesis and self-assembly of PMBTFVB-g-PNIPAM fluorine-containing amphiphilic graft copolymer. RSC Adv 5:74947–74952

    Article  Google Scholar 

  21. Lu G, Liu H, Gao H, Feng C, Li Y, Huang X et al (2015) Construction of semi-fluorinated amphiphilic graft copolymer bearing a poly(2-methyl-1,4-bistrifluorovinyloxybenzene) backbone and poly(ethylene glycol) side chains via the grafting-onto strategy. RSC Adv 5:39668–39676

    Article  Google Scholar 

  22. Wu J, Lund BR, Batchelor B, Dei DK, Liff SM, Smith DW et al (2015) Suzuki polycondensation and post-polymerization modification toward electro-optic perfluorocyclobutyl (PFCB) aryl ether polymers: Synthesis and characterization. J Fluorine Chem 180:227–233

    Article  Google Scholar 

  23. Gauthier MA, Gibson MI, Klok HA et al (2009) Synthesis of functional polymers by post-polymerization modification. Angew Chem Int Ed 48:48–58

    Article  Google Scholar 

  24. Chang B, Kim D, Kim J, Lee S, Joo H et al (2008) Sulfonated poly(fluorene-co-sulfone)ether membranes containing perfluorocyclobutane groups for fuel cell applications. J Membrane Sci 325:989–996

    Article  Google Scholar 

  25. Kalaw GJD, Wahome JAN, Zhu Y, Balkus KJ, Musselman IH, Yang DJ, Ferraris JP et al (2013) Perfluorocyclobutyl (PFCB)-based polymer blends for proton exchange membrane fuel cells (PEMFCs). J Membrane Sci 431:86–95

    Article  Google Scholar 

  26. DesMarteau DD, Martin CW, Ford LA, Xie Y et al (2001) Sulfonated perfluorovinyl functional monomers US Pat 6:(268):532

    Google Scholar 

  27. Gooray NF, Takei F, Tomoi M et al (2016) Electrolyte composition, solid electrolyte membrane, solid polymer fuel cell and manufacturing method for solid electrolyte membrane. US Pat 7:(037):614

    Google Scholar 

  28. Moses JE, Moorhouse AD et al (2007) The growing applications of click chemistry. Chem Soc Rev 36:1249–1262

    Article  Google Scholar 

  29. Günay KA, Theato P, Klok H et al (2013) Standing on the shoulders of Hermann Staudinger: Post-polymerization modification from past to present. J Polym Sci Part A: Poly Chem 51:1–28

    Article  Google Scholar 

  30. Qi Z, Gong C, Liang Y, Li H, Wu Z, Feng W, Wang Y, Zhang S, Li Y et al (2015) Side-chain-type clustered sulfonated poly(arylene ether ketone)s prepared by click chemistry. Int J Hydrogen Energ 40:9267–9277

    Article  Google Scholar 

  31. Cheatham CM, Lee S, Laane J, Babb DA, Smith DW et al (1998) Kinetics of trifluorovinyl ether cyclopolymerization via raman spectroscopy. Polym Int 46:320–324

    Article  Google Scholar 

  32. Mifsud N, Mellon V, Jin J, Topping CM, Echegoyen L, Smith DW et al (2007) First identification of biradicals during thermal [2π + 2π] cyclopolymerization of trifluorovinyl aromatic ethers. Polym Int 56:1142–1146

    Article  Google Scholar 

  33. Png R, Chia P, Tang J, Liu B, Sivaramakrishnan S, Zhou M, Khong HS, Chan SO, Burroughes JH, Chua L, Friend RH, Ho PKH et al (2010) High-performance polymer semiconducting hetero structure devices by nitrene-mediated photocrosslinking of alkyl side chains. Nat Mater 9:152–158

    Article  Google Scholar 

  34. He S, Liu L, Wang X, Zhang S, Guiver MD, Li N et al (2016) Azide-assisted self-crosslinking of highly ion conductive anion exchange membranes. J Membrane Sci 509:48–56

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the financial support from National Natural Science Foundation of China (21764002) and Guangxi Natural Science Foundation (2017GXNSFAA198273).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanqin Zhu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 233 KB)

Supplementary file2 (TIF 11234 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wu, J. & Zhu, Y. Clickable perfluorocyclobutyl aryl ether polymers bearing azido groups: synthesis and post-functionalization. J Polym Res 28, 27 (2021). https://doi.org/10.1007/s10965-020-02369-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02369-x

Keywords

Navigation