Skip to main content
Log in

Synthesis of Functional Hyperbranched Poly(methyltriazolylcarboxylate)s by Catalyst-free Click Polymerization of Butynoates and Azides

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Azide-alkyne click polymerization has become a powerful tool for polymer synthesis. However, the click polymerization between internal alkynes and azides is rarely utilized to prepare functional polymers. In this work, the polymerization reactions of activated internal alkyne monomers of tris(2-butynoate)s (1) with tetraphenylethene-containing diazides (2) were performed in dimethylformamide (DMF) under simple heating, affording four hyperbranched poly(methyltriazolylcarboxylate)s (hb-PMTCs) with high molecular weights (Mw up to 2.4 × 104) and regioregularities (up to 83.9%) in good yields. The hb-PMTCs are soluble in common organic solvents, and thermally stable with 5% weight loss temperatures up to 400 °C. They are non-emissive in dilute solution, but become highly emissive in aggregated state, exhibiting aggregation-induced emission characteristics. The polymers can generate fluorescent photopatterns with high resolution, and can work as fluorescent sensors to detect nitroaromatic explosive with high sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Yan, D.; Gao, C.; Frey, H. Hyperbranched polymers, John Wiley & Sons, Inc., Hoboken, NJ, 2011.

    Google Scholar 

  • Voit, B. I.; Lederer, A. Hyperbranched and highly branched polymer architectures—synthetic strategies and major characterization aspects. Chem. Rev.2009, 109, 5924–5973.

    CAS  PubMed  Google Scholar 

  • Dong, Z.; Ye, Z. Hyperbranched polyethylenes by chain walking polymerization: synthesis, properties, functionalization, and applications. Polym. Chem.2012, 3, 286–30.

    CAS  Google Scholar 

  • Žagar, E.; Žigon, M. Aliphatic hyperbranched polyesters based on 2,2-bis(methylol)propionic acid—determination of structure, solution and bulk properties. Prog. Polym. Sci.2011, 36, 53–88.

    Google Scholar 

  • Abbina, S.; Vappala, S.; Kumar, P.; Siren, E. M. J.; La, C. C.; Abbasi, U.; Brooks, D. E.; Kizhakkedathu, J. H. Hyperbranched polyglycerols: recent advances in synthesis, biocompatibility and biomedical applications. J. Mater. Chem. B2017, 5, 9249–9277.

    CAS  PubMed  Google Scholar 

  • Yang, M. L.; Wu, Y. X.; Liu, Y.; Qiu, J. J.; Liu, C. M. A novel bio-based AB2 monomer for preparing hyperbranched polyamides derived from levulinic acid and furfurylamine. Polym. Chem. 2019, 10, 6217–6226.

    CAS  Google Scholar 

  • Hammer, B. A. G.; Müllen, K. Dimensional evolution of polyphenylenes: expanding in all directions. Chem. Rev. 2016, 116, 2103–2140.

    CAS  PubMed  Google Scholar 

  • Liu, J.; Huang, W.; Pang, Y.; Yan, D. Hyperbranched polyphosphates: synthesis, functionalization and biomedical applications. Chem. Soc. Rev.2015, 44, 3942–3953.

    CAS  PubMed  Google Scholar 

  • Bej, R. Hyperbranched polydisulfides. Polym. Chem. 2020, 11, 990–1000.

    CAS  Google Scholar 

  • Chen, H.; Kong, J. Hyperbranched polymers from A2 + B3 strategy: recent advances in description and control of fine topology. Polym. Chem.2016, 7, 3643–3663.

    CAS  Google Scholar 

  • Zheng, Y.; Li, S.; Weng, Z.; Gao, C. Hyperbranched polymers: advances from synthesis to applications. Chem. Soc. Rev. 2015, 44, 4091–4130.

    CAS  PubMed  Google Scholar 

  • Wu, W.; Tang, R.; Li, Q.; Li, Z. Functional hyperbranched polymers with advanced optical, electrical and magnetic properties. Chem. Soc. Rev.2015, 44, 3997–4022.

    CAS  PubMed  Google Scholar 

  • Liu, J.; Lam, J. W. Y.; Tang, B. Z. Acetylenic polymers: syntheses, structures, and functions. Chem. Rev.2009, 109, 5799–5807.

    CAS  PubMed  Google Scholar 

  • Liu, Y.; Qin, A.; Tang, B. Z. Polymerizations based on triple-bond building blocks. Prog. Polym. Sci.2018, 78, 92–138.

    CAS  Google Scholar 

  • Huang, D.; Qin, A.; Tang, B. Z. Hyperbranched polymers prepared by alkyne-based click polymerization. Acta Polymerica Sinica (in Chinese) 2017, 178–199.

    Google Scholar 

  • Huang, D.; Liu, Y.; Qin, A.; Tang, B. Z. Recent advances in alkyne-based click polymerizations. Polym. Chem.2018, 9, 2853–2867.

    CAS  Google Scholar 

  • Shi, Y.; Cao, X.; Zou, L.; Gan, W.; Gao, H. Preparation of water-soluble hyperbranched polymers with tunable thermosensitivity using chain-growth CuAAC copolymerization. Polym. Chem. 2016, 7, 7500–7505.

    CAS  Google Scholar 

  • Qin, A.; Lam, J. W. Y.; Tang, B. Z. Click polymerization. Chem. Soc. Rev.2010, 39, 2522–2544.

    CAS  PubMed  Google Scholar 

  • Scheel, A. J.; Komber, H.; Voit, B. Novel hyperbranched poly([1,2,3]-triazole)s derived from AB2 Monomers by a 1,3-dipolar cycloaddition. Macromol. Macromol. Rapid Commun.2004, 25, 1175–1180.

    CAS  Google Scholar 

  • Li, B.; Huang, D.; Qin, A.; Tang, B. Z. Progress on catalytic systems used in click polymerization. Macromol. Rapid Commun.2018, 39, 1800098.

    Google Scholar 

  • Wu, J.; Chen, J.; Wang, J.; Liao, X.; Xie, M.; Sun, R. Synthesis and conductivity of hyperbranched poly(triazolium)s with various end-capping groups. Polym. Chem.2016, 7, 633–642.

    CAS  Google Scholar 

  • Tang, R.; Chen, H.; Zhou, S.; Xiang, W.; Tang, X.; Liu, B.; Dong, Y.; Zeng, H.; Li, Z. Dendronized hyperbranched polymers containing isolation chromophores: design, synthesis and further enhancement of the comprehensive NLO performance. Polym. Chem.2015, 6, 5580–5589.

    CAS  Google Scholar 

  • Wang, X.; Hu, R.; Zhao, Z.; Qin, A.; Tang, B. Z. Self-healing hyperbranched polytriazoles prepared by metal-free click polymerization of propiolate and azide monomers. Sci. China: Chem.2016, 59, 1554–1560.

    CAS  Google Scholar 

  • Qin, A.; Liu, Y.; Tang, B. Z. Regioselective metal-free click polymerization of azides and alkynes. Macromol. Chem. Phys.2015, 216, 818–828.

    CAS  Google Scholar 

  • Sandmannn, B.; Happ, B.; Vitz, J.; Paulus, R. M.; Hager, M. D.; Burtscher, P.; Moszner, N.; Schubert, U. S. Metal-free cycloaddition of internal alkynes and multifunctional azides under solvent-free conditions. Macromol. Chem. Phys. 2014, 215, 1603–1608.

    Google Scholar 

  • Pretzel, D.; Sandmann, B.; Hartlieb, M.; Vitz, J.; Hölzer, S.; Fritz, N.; Moszner, N.; Schubert, U. S. Biological evaluation of 1,2,3-triazole-based polymers for potential applications as hard tissue material. J. Polym. Sci., Part A: Polym. Chem.2015, 53, 1843–1847.

    CAS  Google Scholar 

  • Yuan, W.; Chi, W.; Han, T.; Du, J.; Li, H.; Li, Y.; Tang, B. Z. Metal-free phenylpropiolate-azide polycycloaddition: efficient synthesis of functional poly(phenyltriazolylcarboxylate)s. Polym. Chem.2018, 9, 5215–5223.

    CAS  Google Scholar 

  • Chi, W.; Yuan, W.; Du, J.; Han, T.; Li, H.; Li, Y.; Tang, B. Z. Construction of functional hyperbranched poly(phenyltriazoly-lcarboxylate)s by metal-free phenylpropiolate-azide polycyclo-addition. Macromol. Rapid Commun.2018, 39, 1800604.

    Google Scholar 

  • Du, J.; Yuan, W.; Zhang. H.; Li, H.; Li, Y.; Tang, B. Z. Ferrocene-based hyperbranched poly(phenyltriazolylcarboxylate)s: synthesis by phenylpropiolate-azide polycycloaddition and use as precursors to nanostructured magnetoceramics. Polym. Chem. 2019, 10, 5931–5938.

    CAS  Google Scholar 

  • Chi, W. W.; Zhang, R. Y.; Han, T.; Du, J.; Li, H. K.; Zhang, W. J.; Li, Y. F.; Tang, B. Z. Facile synthesis of functional poly(methyltriazolylcarboxylate)s by solvent- and catalyst-free butynoate-azide polycycloaddition. Chinese J. Polym. Sci.2020, 38, 17–23.

    CAS  Google Scholar 

  • Muchtar, Z.; Schappacher, M.; Deffieux, A. Hyperbranched nanomolecules: regular polystyrene dendrigrafts. Macromolecules2001, 34, 7595–7600.

    CAS  Google Scholar 

  • Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: together we shine, united we soar! Chem. Rev.2015, 115, 11718–11940.

    CAS  PubMed  Google Scholar 

  • Zhou, S. Y.; Wan, H. B.; Zhou, F.; Gu, P. Y.; Xu, Q. F.; Lu, J. M. AIEgens-lightened functional polymers: synthesis, properties and applications. Chinese J. Polym. Sci.2019, 37, 302–326.

    CAS  Google Scholar 

  • Feng, G.; Liu, B. Aggregation-induced emission (AIE) dots: emerging theranostic nanolights. Acc. Chem. Res.2018, 51, 1404–1414.

    CAS  PubMed  Google Scholar 

  • Yang, Z.; Chi, Z.; Mao, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Aldred, M. P.; Chi, Z. Recent advances in mechano-responsive luminescence of tetraphenylethylene derivatives with aggregation-induced emission properties. Mater. Chem. Front.2018, 2, 861–890.

    CAS  Google Scholar 

  • Ma, S.; Ma, L.; Han, W.; Jiang, S.; Xu, B.; Tian, W. Progress in 9,10-distyrylanthracene derivatives with aggregation-induced emission. Sci. Sin. Chim.2018, 48, 683–697.

    Google Scholar 

  • Hu, Y. B.; Lam, J. W. Y.; Tang, B. Z. Recent progress in AIE-active polymers. Chinese J. Polym. Sci.2019, 37, 289–301.

    CAS  Google Scholar 

  • Xie, Y.; Gong, Y.; Han, M.; Zhang, F.; Peng, Q.; Xie, G.; Li, Z. Tetraphenylcyclopentadiene-based hyperbranched polymers: convenient syntheses from one pot “A4 + B2” polymerization and high external quantum yields up to 9.74% in OLED devices. Macromolecules2019, 52, 896.

    Google Scholar 

  • Huang, Y.; Chen, P.; Wei, B.; Hu, R.; Tang, B. Z. Aggregation-induced emission-active hyperbranched poly(tetrahydropyri-midine)s synthesized from multicomponent tandem polymerization. Chinese J. Polym. Sci.2019, 37, 428–436.

    CAS  Google Scholar 

  • Wang, J.; Mei, J.; Yuan, W.; Lu, P.; Qin, A.; Sun, J.; Ma, Y.; Tang, B. Z. Hyperbranched polytriazoles with high molecular compres¬sibility: aggregation-induced emission and superamplified explosive detection. J. Mater. Chem.2011, 21, 4056–4059.

    CAS  Google Scholar 

  • Zhou, H.; Chua, M. H.; Tang, B. Z.; Xu, J. Aggregation-induced emission (AIE)-active polymers for explosive detection. Polym. Chem.2019, 10, 3822–3840.

    CAS  Google Scholar 

  • Wu, X.; Tong, H.; Wang, L. Fluorescent polymer materials for detection of explosives. Prog. Chem.2019, 31, 1509–1527.

    Google Scholar 

  • Huang, W.; Bender, M.; Seehafer, K.; Wacker, I.; Schröder, R. R.; Bunz, U. H. F. A tetraphenylethene-based polymer array discriminates nitroarenes. Macromolecules2018, 51, 1345–1350.

    CAS  Google Scholar 

  • Wu. Y.; Qin, A.; Tang, B. Z. AIE-active polymers for explosive detection. Chinese J. Polym. Sci.2017, 35, 141–154.

    CAS  Google Scholar 

  • Han, T.; Zhao, Z.; Lam, J. W. Y.; Tang, B. Z. Monomer stoichiometry imbalance-promoted formation of multisubstituted polynaphthalenes by palladium-catalyzed polycouplings of aryl iodides and internal diynes. Polym. Chem.2018, 9, 885–893.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21875152 and 21404077), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 17KJB150034), the Open Fund of Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangzhou 510640, China (South China University of Technology) (No. 2019B030301003), and the Priority Academic Program Development of Jiangsu High Education Institutions (PAPD). M. N. L. and Q. Z. Z. thank the financial support from Undergraduate Training Program for Innovation and Entrepreneurship, Soochow University (No. 2018xj032). H. K. L. acknowledges the supports from Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1501023B) and China Postdoctoral Science Foundation (No. 2016M591906).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Kun Li.

Electronic Supplementary Information

10118_2020_2421_MOESM1_ESM.pdf

Synthesis of Functional Hyperbranched Poly(methyltriazolylcarboxylate)s by Catalyst-free Click Polymerization of Butynoates and Azides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, MN., Chi, WW., Han, T. et al. Synthesis of Functional Hyperbranched Poly(methyltriazolylcarboxylate)s by Catalyst-free Click Polymerization of Butynoates and Azides. Chin J Polym Sci 38, 1171–1177 (2020). https://doi.org/10.1007/s10118-020-2421-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2421-y

Keywords

Navigation