Skip to main content
Log in

PLLA and cassava thermoplastic starch blends: crystalinity, mechanical properties, and UV degradation

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The effect of the addition of cassava thermoplastic starch on the general properties and the photodegradation behavior of poly(L-lactic acid) (PLLA) was evaluated by blending PLLA with TPS in different weight percentages (5, 10, 15, 20 and 25 wt%). The blends were studied through differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and mechanical properties. All the studies were performed before and after the photo-degradation in a climatic chamber. It was found that TPS was immiscible with PLLA and reduced Tg, Tm, and Tcc and influence Xc of PLLA, indicating an interaction of the TPS phase with the PLLA matrix, probably due to plasticizer migration. The tension test showed a decrease in the mechanical resistance of the blends, especially at the lowest TPS content; however, an increase in TPS lead to an increase in ductility. On the other hand, the UV degradation resistance was higher for the blends than for L100, possibly due to the protective effect of glycerol. It was concluded that the films obtained were fully biobased and biodegradable with higher UV resistance than the PLLA and with similar ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shah AA, Hasan F, Hameed A, Ahmed S et al (2008) Biotechnol Adv 26:246

    CAS  PubMed  Google Scholar 

  2. Greene J, Wang F et al (2009) In: Society of Plastics Engineers - Global Plastics Environmental Conference, GPEC 2008. p 112

  3. Haider TP, Völker C, Kramm J, Landfester K, Wurm FR et al (2019) Angew Chemie Int Edit 58:50

    CAS  Google Scholar 

  4. Garlotta D (2001) J Polym Environ 9:63

    CAS  Google Scholar 

  5. Lim LT, Auras R, Rubino M et al (2008) Prog Polym Sci 33:820

    CAS  Google Scholar 

  6. Auras R, Lim LT, Selke SEM, Tsuji H et al (2010) Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications. John Wiley and Sons

  7. Panchal SS, Vasava DV et al (2020) ACS Omega 5:4370

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Tsuji H, Matsumura N, Arakawa Y et al (2016) Polym J 48:1087

    CAS  Google Scholar 

  9. Niranjana Prabhu T, Prashantha K et al (2018) Polym Compos 39:2499

    CAS  Google Scholar 

  10. Ali Nezamzadeh S, Ahmadi Z, Afshari Taromi F et al (2017) J Appl Polym Sci 134:1

    Google Scholar 

  11. Liu H, Zhang J et al (2011) J Polym Sci Polym Phys 49:1051

    CAS  Google Scholar 

  12. Nofar M, Sacligil D, Carreau PJ, Kamal MR, Heuzey M-C et al (2019) Int J Biol Macromol 125:307

    CAS  PubMed  Google Scholar 

  13. Tester RF, Karkalas J et al (2005) In: Steinbüchel A (Ed.) Biopolymers Online

  14. Khan B, Bilal Khan Niazi M, Samin G, Jahan Z et al (2017) J Food Process Eng 40:e12447

  15. Gadhave RV, Das A, Mahanwar PA, Gadekar PT et al (2018) Open Journal of Polymer Chemistry 08:21. https://doi.org/10.4236/ojpchem.2018.82003

    Article  CAS  Google Scholar 

  16. Ke T, Sun X et al (2000) Cereal Chem 77:761

    CAS  Google Scholar 

  17. Zaaba NF, Ismail H et al (2019) Polym-Plast Technol 58:1945

    CAS  Google Scholar 

  18. Leja K, Lewandowicz G et al (2010) Pol J Environ Stud 19:255

    Google Scholar 

  19. Koh JJ, Zhang X, He C et al (2018) Int J Biol Macromol 109:99

    CAS  PubMed  Google Scholar 

  20. González-López ME, Martín del Campo AS, Robledo-Ortíz JR, Arellano M, Pérez-Fonseca AA et al (2020) Polym Degrad Stabil 179:109290

  21. Park JW, Im SS, Kim SH, Kim YH et al (2000) Polym Eng Sci 40:2539

    CAS  Google Scholar 

  22. Teixeira EM, Curvelo AAS, Corrêa AC, Marconcini JM, Glenn GM, Mattoso LHC et al (2012) Ind Crops Prod 37:61

    CAS  Google Scholar 

  23. Müller CM, Pires ATN, Yamashita F et al (2012) J Brazil Chem Soc 23:426

    Google Scholar 

  24. Huneault MA, Li H et al (2007) Polymer 48:270

    CAS  Google Scholar 

  25. Martin O, Avérous L et al (2001) Polymer 42:6209

    CAS  Google Scholar 

  26. Copinet A, Bertrand C, Govindin S, Coma V, Couturier Y et al (2004) Chemosphere 55:763

    CAS  PubMed  Google Scholar 

  27. Lv S, Liu X, Gu J, Jiang Y, Tan H, Zhang Y et al (2017) Constr Build Mater 144:525

    CAS  Google Scholar 

  28. Copinet A, Bertrand C, Longieras A, Coma V, Couturier Y et al (2003) J Polym Environ 11:169

    CAS  Google Scholar 

  29. Matzinos P, Tserki V, Kontoyiannis A, Panayiotou C et al (2002) Polym Degrad Stab 77:17

    CAS  Google Scholar 

  30. Aou K, Hsu SL, Kleiner LW, Tang FW et al (2007) J Phys Chem B 111:12322

    CAS  Google Scholar 

  31. Reiter G, Strobl GR et al (2007) Progress in Understanding of Polymer Crystallization. Springer, Berlin Heidelberg, Berlin

    Google Scholar 

  32. Rodriguez-Gonzalez FJ, Ramsay BA, Favis BD et al (2004) Carbohydr Polym 58:139

    CAS  Google Scholar 

  33. Forssell P, Mikkilä J, Suortti T, Seppälä J, Poutanen K et al (1996) J Macromol Sci A 33:703

    Google Scholar 

  34. Lourdin D, Coignard L, Bizot H, Colonna P et al (1997) Polymer 38:5401

    CAS  Google Scholar 

  35. Ferri JM, Garcia-Garcia D, Sánchez-Nacher L, Fenollar O, Balart R et al (2016) Carbohydr Polym 147:60

    CAS  PubMed  Google Scholar 

  36. Quiles-Carrillo L, Duart S, Montanes N, Torres-Giner S, Balart R et al (2018) Mater Des 140:54

    CAS  Google Scholar 

  37. Quiles-Carrillo L, Montanes N, Sammon C, Balart R, Torres-Giner S et al (2018) Ind Crops Prod 111:878

    CAS  Google Scholar 

  38. Maiza M, Benaniba MT, Quintard G, Massardier-Nageotte V et al (2015) Polimeros 25:581

    Google Scholar 

  39. Kulinski Z, Piorkowska E et al (2005) Polymer 46:10290

    CAS  Google Scholar 

  40. Martino VP, Ruseckaite RA, Jiménez A et al (2006) In: Journal of Thermal Analysis and Calorimetry. p 707

  41. Mano JF, Koniarova D, Reis RL et al (2003) In: Journal of Materials Science: Materials in Medicine. p 127

  42. Saeidlou S, Huneault MA, Li H, Park CB et al (2012) Prog Polym Sci 37:1657

    CAS  Google Scholar 

  43. Mandelkern L (2004) Crystallization of Polymers:, vol 2. Cambridge University Press, Cambridge, Kinetics and Mechanisms

    Google Scholar 

  44. Teixeira EM, Pasquini D, Curvelo AAS, Corradini E, Belgacem MN, Dufresne A et al (2009) Carbohydr Polym 78:422

    CAS  Google Scholar 

  45. Jacobsen S, Fritz HG et al (1996) Polym Eng Sci 36:2799

    CAS  Google Scholar 

  46. Aggarwal P, Dollimore D et al (1996) Talanta 43:1527

    CAS  PubMed  Google Scholar 

  47. Mitchell MR, Link RE, Yang MH, Lin YH et al (2009) J Test Eval 37:102271

    Google Scholar 

  48. Arboleda GA, Montilla CE, Villada HS, Varona GA et al (2015) Int J Polym Sci 2015:1

    Google Scholar 

  49. Jose S, Aprem AS, Francis B, Chandy MC, Werner P, Alstaedt V, Thomas S et al (2004) Eur Polym J 40:2105

    CAS  Google Scholar 

  50. Bhat R, Karim AA et al (2009) Compr Rev Food Sci Food Saf 8:44–58

    CAS  Google Scholar 

  51. Peak MJ, Peak JG et al (1980) RadiatRes 83:553

    CAS  Google Scholar 

  52. Quispe M, López OV, Villar MA et al (2019) J Renew Mater 7:383

    Google Scholar 

  53. Zhou J, Ma Y, Zhang J, Tong J et al (2009) J Appl Polym Sci 112:99

    CAS  Google Scholar 

  54. Villar MA, Barbosa SE, García MA, Castillo LA, López OV et al (2017) Starch-Based Materials in Food Packaging: Processing, Characterization and Applications

  55. Yang SL, Wu ZH, Yang W, Yang MB et al (2008) Polym Test 27:957

    CAS  Google Scholar 

  56. Azwa ZN, Yousif BF, Manalo AC, Karunasena W et al (2013) Mater Des 47:424

    CAS  Google Scholar 

  57. Ikada E (1997) J Photopolym Sci Technol 10:265

    CAS  Google Scholar 

  58. Feldman D (2002) J Polym Environ 10:163

    CAS  Google Scholar 

  59. Guillet JE (1972) Pure Appl Chem 30:135

    CAS  Google Scholar 

  60. Campos A, Marconcini JM, Martins-Franchetti SM, Mattoso LHC et al (2012) Polym Degrad Stab 97:1948

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding support from Decanato de Investigación y Desarrollo Universidad Simón Bolívar DID G02. Also, the authors acknowledge the contribution of Professor Alejandro Müller to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rose Mary Michell.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 338 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, C., Medina, K., D´Ambrosio, R. et al. PLLA and cassava thermoplastic starch blends: crystalinity, mechanical properties, and UV degradation. J Polym Res 28, 26 (2021). https://doi.org/10.1007/s10965-020-02368-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02368-y

Keywords

Navigation