Skip to main content

Advertisement

Log in

Design and development of bio-carbon reinforced hetero structured biophenolics polybenzoxazine-epoxy hybrid composites for high performance applications

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

An attempt has been made in the present work to prepare hetero structured biobased benzoxazine-epoxy matrix composites using dairy farm waste based carbon as reinforcement. The prepared cow dung carbon(f-CDC) reinforced hetero structured biobased benzoxazine-epoxy composites and hetero structured benzoxazine-epoxy (HSBBz-EP) matrix are characterised using different analytical studies viz., FTIR, DSC, TGA, antimicrobial and anticorrosion studies in order to confirm the characteristic properties of the composites suitable for advanced applications. Data resulted from different analysis and characterisation ascertain that the prepared 5wt% f-CDC/HSBBz-EP composite sample possesses high glass transition temperature (199.90), better hydrophobic (water contact angle 113.60) behaviour , improved corrosion resistance (99.4%) in 3.5wt% NaCl solution, enhanced antibacterial (10mm) activity and higher thermal stability (293.8°C) with 5% weight loss. From the above results, it was concluded that the dairy farm waste based carbon reinforced biobased benzoxazine-epoxy composites developed in the present work can be used for different industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Asif A, Leena K et al (2007) Hydroxyl terminated poly (ether ether ketone) with pendant methyl group-toughened epoxy clay ternary nanocomposites: Preparation, morphology, and thermomechanical properties. J Appl Polym Sci 106:2936–2946

    CAS  Google Scholar 

  2. Kim H-D, Ishida H (2000) Study on the chemical stability of benzoxazine-based phenolic resins in carboxylic acids. J Appl Polym Sci 79:1207–1219

    Google Scholar 

  3. Patil Deepak M, Phalak Ganesh A et al (2017) Synthesis and characterization of bio-based benzoxazine oligomer from cardanol for corrosion resistance application. J Coatings Tech and Res 14:517–530

    CAS  Google Scholar 

  4. Chen J, Zeng M et al (2019) Design and preparation of benzoxazine resin with high frequency low dielectric constants and ultralow dielectric losses. ACS Appl Polym Mater 4:625–630

    Google Scholar 

  5. Selvaraj V, Raghavarshini TR et al (2019) Low Temperature Cure Siloxane Based Hybrid Renewable Cardanol Benzoxazine Composites for Coating Applications. J Polym Environ 27:2682–2696

    CAS  Google Scholar 

  6. Bagheri R, Williams MA et al (1997) Use of surface modified recycled rubber particles for toughening of epoxy polymers. Polym Eng & Sci 37:245–251

    CAS  Google Scholar 

  7. Lin Shyue T, Huang Steve K (1996) Synthesis and impact properties of siloxane-DGEBA epoxy copolymers. J Polym Sci Part A: Polym Chem 34:1907–1922

    CAS  Google Scholar 

  8. Lee YR, Kim SC et al (2011) Graphite oxides as effective fire retardants of epoxy resin. Macromol Res 19:66–71

    CAS  Google Scholar 

  9. Kumar SR, Dhanasekaran J et al (2015) Epoxy benzoxazine based ternary systems of improved thermo-mechanical behavior for structural composite applications. RSC Adv 5:3709–3719

    Google Scholar 

  10. Rao B, Rajavardhana K et al (2005) Benzoxazine-epoxy copolymers: effect of molecular weight and crosslinking on thermal and viscoelastic properties. Polym Int 1371:1371–1376

    Google Scholar 

  11. Ambrozic R, Sebenik U et al (2016) Epoxy emulsions stabilized with reactive bio-benzoxazine surfactant from epoxidized cardanol for coatings. Eur Polym J 81:138–151

    CAS  Google Scholar 

  12. Selvaraj V, Raghavarshini TR (2019) Building up of Prosopis juliflora carbon incorporated cardanol based polybenzoxazine composites with intensification of mechanical and corrosion resistance properties for adaptable applications. Polym Bull. https://doi.org/10.1007/s00289-019-03084-4

    Article  Google Scholar 

  13. Rao BS, Reddy KR (2005) Benzoxazine–epoxy copolymers: effect of molecular weight and crosslinking on thermal and viscoelastic properties. Polym Int 54:1371–1376

    CAS  Google Scholar 

  14. Yagci Yusuf, Kiskan Baris (2009) Narendra Nath Ghosh, Recent Advancement on Polybenzoxazine—A Newly Developed High Performance Thermoset. J Polym Sci: Part A: Polym Chem 47:5565–5576

    CAS  Google Scholar 

  15. Ntamila MS, Hassanali A (1976) Isolation of oil of clove and separation of eugenol and acetyl eugenol; An instructive experiment for beginning chemistry undergraduates. J Chemical Edu 53:263

    CAS  Google Scholar 

  16. Peterson Thomas H, Bryan James H et al (1993) A kinetic study of the isomerization of eugenol: The quantitative use of NMR, GC, and HPLC in a single organic laboratory experiment that demonstrates alternative approaches to solving a problem. J Chemical Edu 70:A96

    CAS  Google Scholar 

  17. Attanasi OA, Berretta S et al (2006) Tetrabromo Hydrogenated Cardanol: Efficient and Renewable Brominating Agent. Org Lett 8:4291–4293

    CAS  PubMed  Google Scholar 

  18. Amorati R, Pedulli GF et al (2001) Absolute rate constants for the reaction of peroxyl radicals with cardanol derivatives. J Chemical Soc Perkin Transactions 2:2142–2146

    Google Scholar 

  19. Cliftonbrown John C, Stampfl Paul F et al (2004) Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Glob Change Biol 10:509–518

    Google Scholar 

  20. Pattanayak J, Mondal K et al (2000) A parametric evaluation of the removal of As(V) and As(III) by carbon-based adsorbents. Carbon 38:589–596

    CAS  Google Scholar 

  21. Huang J, Bobby G (2008) Sumpter and Vincent Meunier, A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials and electrolytes. Chem Eur J 14:6614–6626

    CAS  PubMed  Google Scholar 

  22. Saikat D, Asim B et al (2014) Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy Environ Sci 7:3574–3592

    Google Scholar 

  23. Hu B, Wang K et al (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mat 22:813–828

    CAS  Google Scholar 

  24. Ahmedna M, Marshall Wayne E et al (2004) The use of nutshell carbons in drinking water filters for removal of chlorination by-products. J Chem Technol Biotechnol 79:1092–1097

    CAS  Google Scholar 

  25. Sreekumar PA, Albert P et al (2008) Mechanical and water sorption studies of eco-friendly banana fiber-reinforced polyester composites fabricated by RTM. J Appl Polym Sci 109:1547–1555

    CAS  Google Scholar 

  26. Bond Tami C, Streets David G et al (2004) A technology-based global inventory of black and organic carbon emissions from combustion. J Geophys Res 109(D14203):1–43

    Google Scholar 

  27. Kim S, Dale Bruce E et al (2008) Energy and greenhouse gas profiles of polyhydroxybutyrates derived from corn grain: A life cycle perspective. Environ Sci Technol 42:7690–7695

    CAS  PubMed  Google Scholar 

  28. Zhao R-S, Wang X et al (2009) Sensitive determination of phenols in environmental water samples with SPE packed with bamboo carbon prior to HPLC. J Sep Sci 32:630–636

    CAS  PubMed  Google Scholar 

  29. Divyashree A, Gurumurthy H (2015) Activated carbon nanospheres derived from bio-waste materials for supercapacitor applications-A review. RSC Adv 5:88339–88352

    Google Scholar 

  30. Marín MO, González CF et al (2007) Porous structure of activated carbon prepared from cherry stones by chemical activation with phosphoric acid. Energy Fuels 21:2942–2949

    Google Scholar 

  31. Singh D, Fulekar MH (2009) Bioremediation of phenol by a novel partitioning bioreactor using cow dung microbial consortia. Special Issue: Biotech in India 4:423–431

    CAS  Google Scholar 

  32. Ma G, Yang Q et al (2015) Nitrogen doped porous carbon derived from biomass waste for high performance supercapacitor. Bioresour Technol 197:137–142

    CAS  PubMed  Google Scholar 

  33. Schouten S, Van Jan W et al (2012) Bio-energy from cattle manure : Implications of anaerobic digestion and subsequent pyrolysis for carbon andnitrogen dynamics in soil. Bioenergy 4:751–760

    CAS  Google Scholar 

  34. Dumas L, Bonnaud L et al (2016) Chavicol benzoxazine: Ultrahigh Tg biobased thermoset with tunable extended network. Eur Polym J 81:337–346

    CAS  Google Scholar 

  35. Saha P, Uddin MH et al (2019) A steady-state equilibrium-based carbon dioxide gasification simulation model for hydrothermally carbonized cow dung. Energy Convers Manag 191:12–22

    CAS  Google Scholar 

  36. Ghasemi M, Mashhadi S et al (2016) Microwave-assisted synthesis of tetraethylenepentamine functionalized activated carbon with high adsorption capacity for malachite green dye. J Mol Liq 213:317–325

    CAS  Google Scholar 

  37. Selvaraj V, Jayanthi KP et al (2015) Development of polybenzoxazine/TSBA-15 composite from renewable resource cardanol for low k applications. RSC Adv 5:48898–48907

    CAS  Google Scholar 

  38. Wattanathana W, Veranitisagul C et al (2017) 3,4-Dihydro-1,3–2H-Benzoxazines, Advanced and Emerging Polybenzoxazine. Sci Technol 6:75–88

    Google Scholar 

  39. Selvaraj V, Raghavarshini TR et al (2020) Advanced development of dairy farm waste-based biocarbon-reinforced unsymmetrical structured biophenols polybenzoxazine composites. High Perform Polym 095400832094157. https://doi.org/10.1177/0954008320941575

  40. Rao BS, Surendra P (2016) Synthesis and characterization of difunctional benzoxazines from aromatic diester diamine containing varying length of aliphatic spacer group: Polymerization, thermal and viscoelastic characteristics. Eur Polym J 77:139–154

    CAS  Google Scholar 

  41. Reddy KR, Raghu AV et al (2008) Synthesis and characterization of novel polyurethanes based on 4,4’-{1,4-phenylenebis[methylylidenenitrilo]}diphenol. Polym Bull 60:609–616

    CAS  Google Scholar 

  42. Raghu AV, Jeong HM et al (2008) Synthesis and characterization of novel polyurethanes based on 4-{(4-hydroxyphenyl)iminomethyl}phenol. Macromol Res 16:194–199

    CAS  Google Scholar 

  43. Thirukumaran P, Shakila A et al (2014) Synthesis and characterization of novel bio-based benzoxazines from eugenol. RSC Adv 4:7959–7966

    CAS  Google Scholar 

  44. Wang S, Li W-C et al (2011) Temperature programmed precise control over the sizes of carbon nanospheres based on benzoxazine chemistry. J Amer Chem Soc 133:15304–15307

    CAS  Google Scholar 

  45. Rajput Amit B, Rahaman Seikh J et al (2012) Synthesis, characterization and properties of flexible magnetic nanocomposites of cobalt ferrite-polybenzoxazine-linear low-density polyethylene. J Appl Polym Sci 128:3726–3733

    Google Scholar 

  46. Kiran Yasmin Khan, Barkat Ali et al (2017) Cow manure and cow manure-derived biochar application as a soil amendment for reducing cadmium availability and accumulation by Brassica chinensis L. in acidic red soil. J Integr Agric 16:725–734

    CAS  Google Scholar 

  47. Ormaechea P, Castrillon L et al (2018) Enhancement of biogas production from cattle manure pre-treated and/or co-digested at pilot-plant scale. Characterization by SEM Renew Energy 126:897–904

    CAS  Google Scholar 

  48. Grishchuk S, Schmitt S et al (2011) Structure and properties of amine-hardened epoxy/benzoxazine hybrids: Effect of epoxy resin functionality. J Appl Polym Sci 124:2824–2837

    Google Scholar 

  49. Rajesh Kumar S, Dhanasekaran J et al (2015) Epoxy benzoxazine based ternary systems of improved thermo-mechanical behavior for structural composite applications. RSC Adv 5:3709–3719

    CAS  Google Scholar 

  50. Rajesh Kumar S, Krishna Mohan S et al (2018) Novel glass fabric reinforced polybenzoxazine-silicate composites along with polyvinyl butyral for high service temperature applications. New J Chem 42:16083–16092

    Google Scholar 

  51. Zhang Kan, Han Lu et al (2018) Examining the effect of hydroxyl groups on the thermal properties of polybenzoxazines: using molecular design and Monte Carlo simulation. RSC Adv 8:18038–18050

    CAS  Google Scholar 

  52. Yi Xu, Ran Qichao et al (2015) Study on the catalytic prepolymerization of an acetylene-functional benzoxazine and the thermal degradation of its cured product. RSC Adv 5:82429–82437

    Google Scholar 

  53. Brown Emily A, Rider David A (2017) Pegylated Polybenzoxazine Networks with Increased Thermal Stability from Miscible Blends of Tosylated Poly(ethylene glycol) and a Benzoxazine Monomer. Macromolecules 50:6468–6481

    CAS  Google Scholar 

  54. Jung B-O, Chung S-J et al (2006) Preparation and characterization of eugenol-grafted chitosan hydrogels and their antioxidant activities. J Appl Polym Sci 99:3500–3506

    CAS  Google Scholar 

  55. Harvey Benjamin G, Guenthner Andrew J et al (2014) Synthesis and characterization of a renewable cyanate ester/polycarbonate network derived from eugenol. Polymer 55:5073–5079

    CAS  Google Scholar 

  56. Espinosa MA, V. Ca´diz and M. Galia`, (2003) Synthesis and characterization of benzoxazine-based phenolic resins: Cross linking study. J Appl Polym Sci 90:470–481

    CAS  Google Scholar 

  57. Rimdusit Sarawut, Ishida Hatsuo (2000) Synergism and Multiple Mechanical Relaxations Observed in Ternary Systems Based on Benzoxazine. Epoxy, and Phenolic Resins. J Polym Sci: Part B: Polym Phys Ed 38:1687–1698

    CAS  Google Scholar 

  58. Rimdusit S, Jiraprawatthagool V et al (2006) Characterization of SiC Whisker-Filled Polybenzoxazine Cured by Microwave Radiation and Heat. Int J Polym Anal Charact 11:441–453

    CAS  Google Scholar 

  59. Suhas DP, Aminabhavi TM et al (2014) para-Toluene sulfonic acid treated clay loaded sodium alginate membranes for enhanced pervaporative dehydration of isopropanol. Appl Clay Sci 101:419–429

    CAS  Google Scholar 

  60. Suhas DP, Aminabhavi TM et al (2015) Hydrogen peroxide treated graphene as an effective nanosheet filler for separation application. RSC Advances 5:100984–100995

    CAS  Google Scholar 

  61. Zhang H, Lu X et al (2018) Preparation of superhydrophobic polybenzoxazine/SiO2 films with self-cleaning and ice delay properties. Prog Org Coat 123:254–260

    CAS  Google Scholar 

  62. Camlibel NO, Avinc O et al (2019) The effects of huntite–hydromagnesite inclusion in acrylate based polymer paste coating process on some textile functional performance properties of cotton fabric. Cellulose 26:1367–1381

    CAS  Google Scholar 

  63. Zhou C, Lin J et al (2016) Enhanced corrosion resistance of polybenzoxazine coatings by epoxy incorporation. RSC Advances 6:28428–28434

    CAS  Google Scholar 

  64. Caldona Eugene B, Al Christopher C et al (2017) Novel anti-corrosion coatings from rubber-modified polybenzoxazine-based polyaniline composites. Appl Surf Sci 422:162–171

    CAS  Google Scholar 

  65. Souhila A, Belkacem N et al (2014) Characterization and corrosion protection properties of composite material (PANI+TiO2) coatings on A304 stainless steel. J Coat Technol Res 12:107–120

    Google Scholar 

  66. Choi S-W, Park JO et al (2013) Design and synthesis of cross-linked copolymer membranes based on poly(benzoxazine) and polybenzimidazole and their application to an electrolyte membrane for a high-temperature PEM fuel cell. Polymers 5:77–111

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Selvaraj.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvaraj, V., Raghavarshini, T.R. & Alagar, M. Design and development of bio-carbon reinforced hetero structured biophenolics polybenzoxazine-epoxy hybrid composites for high performance applications. J Polym Res 28, 174 (2021). https://doi.org/10.1007/s10965-020-02338-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02338-4

Keywords

Navigation