Skip to main content
Log in

Development of Biocomposites from Agro Wastes for Low Dielectric Applications

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The present work is attempting to synthesize and characterizations of a novel carbazole core containing cardanol based benzoxazine monomer from carbazole core containing aromatic diamine, cardanol and paraformaldehyde. In addition, carbazole core containing cardanol based benzoxazine polymer and various weight percentages of amine functionalized rice husk ash incorporated carbazole core containing cardanol based polybenzoxazine composites were prepared. The prepared polymer and its composites were characterized by FTIR, XRD, DSC, TGA and dielectric studies. The various studies confirm that the composites show increased Tg, higher char yield and better thermal stability compared to carbazole core containing cardanol based benzoxazine polymer. In addition to that the composites show significant decrease in the dielectric constant values than the neat cardanol based polybenzoxazine. The surface morphology and the distribution of rice husk ash in carbazole core containing cardanol based polybenzoxazine composites are confirmed by SEM and TEM analysis. Hence, the present study has attempted to prepared eco-friendly value added carbazole core containing cardanol based polybenzoxazine products for low dielectric constant applications by making use of biowaste for both matrix and reinforcement preparation to form biowaste based composites.

Graphical Abstract

Schematic representation for the preparation of carbazole core containing cardanol based benzoxazine monomer, polybenzoxazine and biobased polybenzoxazine composites

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ree M (2006) High performance polyimide for applications in microelectronics and flat panel displays. Macromol Res 14:1–33

    Article  CAS  Google Scholar 

  2. Xie SH, Zhu BK, Li JB, Wei XZ, Xu ZK (2004) Preparation and properties of polyimide/aluminum nitride composites. Polym Test 23:797–801

    Article  CAS  Google Scholar 

  3. Wang J, Yi X-S (2003) Preparation and the properties of PMR-type polyimide- nitride. J Appl Polym Sci 89:3913–3917

    Article  CAS  Google Scholar 

  4. Wong CP, Bollampally RS (1999) Comparative study of thermally conductive fillers for use in liquid encapsulants for electronic packaging. IEEE Trans Adv Packag 22:54–59

    Article  CAS  Google Scholar 

  5. Su YC, Chang FC (2003) Synthesis and characterization of fluorinated polybenzoxazine material with low dielectric constant. Polymer 44:7989–7996

    Article  CAS  Google Scholar 

  6. Su YC, Chen WC, Ou KL, Chang FC (2005) Study of the morphologies and dielectric constants of nanoporous materials derived from benzoxazine-terminated poly(ε-caprolactone)/polybenzoxazine copolymers. Polymer 46:3758–3766

    Article  CAS  Google Scholar 

  7. Tseng MC, Liu Y (2010) Preparation, morphology, and ultra-low dielectric constants of benzoxazine-based polymers/polyhedral oligomeric silsesquioxane (POSS) nanocomposites. Polymer 51:5567–5575

    Article  CAS  Google Scholar 

  8. Chen YW, Kang ET (2004) New approach to nanocomposites of polyimides containing polyhedral oligomeric silsesquioxane for dielectric applications. Mater Lett 58:3716–3729

    Article  CAS  Google Scholar 

  9. Leu CM, Chang YT, Wei KH (2003) Polyimide-side-chain tethered polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric film applications. Chem Mater 15:3721–3727

    Article  CAS  Google Scholar 

  10. Kumar A, Mohanta K, Kumar D, Parkash O (2012) Properties and industrial applications of rice husk a review. Int J Emerg Technol Adv Eng 2:2250–2459

    Google Scholar 

  11. Adam F, Hello KM, Ben Aisha MR (2011) The synthesis of heterogeneous 7-amino-1-naphthalene sulfonic acid immobilized silica nano particles and its catalytic activity. J Taiwan Inst Chem Eng 42:843–851

    Article  CAS  Google Scholar 

  12. Wang W et al (2011) Silica nanoparticles and frameworks from rice husk biomass. ACS Appl Mater Interfaces 4:977–981

    Article  CAS  Google Scholar 

  13. Rattanasak U, Chindaprasirt P, Suwanvitaya P (2010) Development of high volume rice husk ash alumino silicate composites. Int J Miner Metall Mater 17:654–659

    Article  CAS  Google Scholar 

  14. Zhang H, Zhao X, Ding X, Lei H, Chen X, An D, Li Y, Wang Z (2010) A study on the consecutive preparation of dxylose and pure superfine silica from rice husk. Bioresource Technol 101:1263–1267

    Article  CAS  Google Scholar 

  15. Prasad DS, Krishna AR (2012) Tribological properties of A356. 2/RHA composites. J Mater Sci Technol 28:367–372

    Article  CAS  Google Scholar 

  16. Fuad MA, Jamaludin M, Ishak ZAM, Omar AKM (1993) Rice husk ash as a fillers in polypropylene: a preliminary study. Intan J Polym Mater 19:75–92

    Article  CAS  Google Scholar 

  17. Mandal A, Murty BS, Chakraborty M (2009) Sliding wear behaviour of T6 treated A356–TiB2 in-situ composites. Wear 266:865–872

    Article  CAS  Google Scholar 

  18. Ramachandra M, Radhakrishna K (2007) Effect of reinforcement of flyash on sliding wear, slurry erosive wear and corrosive behavior of aluminium matrix composite. Wear 262:1450–1462

    Article  CAS  Google Scholar 

  19. Surappa MK (2008) Synthesis of fly ash particle reinforced A356 Al composites and their characterization. Mater Sci Eng A 480:117–124

    Article  CAS  Google Scholar 

  20. Islam MM, Kabir H, Gafur MA, Bhuiyan MMR, Kabir MA, Qadir MR, Ahmed F (2015) Study on physio-mechanical properties of rice husk ash polyester resin composite. Int Lett Chem Phys Astron 53:95–105

    Article  Google Scholar 

  21. Ofem MI, Umar M, Ovat FA (2012) Mechanical properties of rice husk fiiled cashew nut shell liquid resin composites. J Mater Sci Res 1(4):89–97

    CAS  Google Scholar 

  22. Yang HS, Kim HJ, Son J, Park HJ, Lee BJ, Hwang TS (2004) Rice-husk flour filled polypropylene composites; mechanical and morphological study. Compos Struct 63:305–312

    Article  Google Scholar 

  23. Ishida H, Lee YH (2001) Synergism observed in polybenzoxazine and poly(ε-caprolactone) blends by dynamic mechanical and thermogravimetric analysis. Polymer 42:6971–6979

    Article  CAS  Google Scholar 

  24. Ru!igaj A, Ali B, Krajnc M, Ebenik U (2015) Curing of bisphenol A-aniline based benzoxazine using phenolic, amino and mercapto accelerators eXPRESS. Polym Lett 9:647–657

    Article  CAS  Google Scholar 

  25. Grishchuk S, Mbhele Z, Schmitt S, Karger-Kocsis J (2011) Structure, thermal and fracture mechanical properties of benzoxazine-modified amine-cured DGEBA epoxy resins. Expr Polym Lett 5:273–282

    Article  CAS  Google Scholar 

  26. Ishida H, Roedriguz Y (1995) Catalyzing the curing reaction of a new benzoxazine-based phenolic resin., J Appl Polym Sci 58:1751–1760

    Article  CAS  Google Scholar 

  27. Ning X, Ishida HS (1994) Phenolic materials via ring-opening polymerization of benzoxazines – effect of molecular-structure on mechanical and dynamic-mechanical properties. Polym Sci B 32:921–927

    Article  CAS  Google Scholar 

  28. Ishida H, Allen DJ (1996) Physical and mechanical characterization of near-zero shrinkage polybenzoxazine. J Polym Sci B 34:1019–1030

    Article  CAS  Google Scholar 

  29. Ghosh NN, Kiskan B, Yagci Y (2007) Polybenzoxazines: new high performance thermosetting resins: synthesis and properties. Prog Polym Sci 32:1344–1391

    Article  CAS  Google Scholar 

  30. Wirasate S, Dhumrongvaraporn S, Allen DJ, Ishida H (1998) Molecular origin of unusual physical and mechanical properties in novel phenolic materials based on benzoxazine chemistry. J Appl Polym Sci 70:1299–1306

    Article  CAS  Google Scholar 

  31. Wang YX, Ishida H (2002) Development of low-viscosity benzoxazine resins and their polymers. J Appl Polym Sci 86:2953–2966

    Article  CAS  Google Scholar 

  32. Calò E, Maffezzoli A, Mele G, Martina F, Mazzetto SE, Tarzia A, Stifani C (2007) Synthesis of a novel cardanol-based benzoxazine monomer and environmentally sustainable production of polymers and bio-composites. Green Chem 9:754–759

    Article  CAS  Google Scholar 

  33. Lochab B, Varma IK, Bijwe J (2010) Thermal behaviour of cardanol-based benzoxazines. Monomers Polym J Therm Anal Calorim 102:769–774

    Article  CAS  Google Scholar 

  34. Rao BS, Palanisamy A (2011) Monofunctional benzoxazine from cardanol for bio-composite applications. React Funct Polym 71:148–154

    Article  CAS  Google Scholar 

  35. Radhika T, Sugunan S (2006) Influence of surface and acid properties of vanadia supported on ceria promoted with rice husk silica on cyclohexanol decomposition. J Mol Catal A 7:528–533

    CAS  Google Scholar 

  36. Liou G-S, Hsiao S-H, Chen H-W (2006) Novel high-Tg poly(amine-imide)s bearing pendent N-phenylcarbazole units: synthesis and photophysical, electrochemical and electrochromic properties. J Mater Chem 16:1831–1842

    Article  CAS  Google Scholar 

  37. Mureseanu M, Reiss A, Stefanescu I, David E, Parvulescu V, Renard G, Hulea V (2008). Modified SBA-15 mesoporous silica for heavy metal ions remediation. Chemosphere 73:1499–1504

    Article  CAS  PubMed  Google Scholar 

  38. Selvaraj V, Jayanthi KP, Alagar M (2017) Synthesis and characterization of cardanol based fluorescent composite for optoelectronic and antimicrobial applications. Polymer 108:449–461

    Article  CAS  Google Scholar 

  39. Zuniga C, Bonnaud L, Lligadas G, Ronda JC, Galià M, Cádiz V, Dubois P (2014) Convenient and solventless preparation of neat carbon nanotube/polybenzoxazine nanocomposites with low percolation threshold and improved thermal and fire properties. J Mater Chem A 2:6814–6822

    Article  CAS  Google Scholar 

  40. Dizman C, Altinkok C, Tasdelen MA (2017) Synthesis of self-curable polysulfone containing pendant benzoxazine units via CuAAC click chemistry. Des Monomers Polym 20:293–299

    Article  CAS  PubMed  Google Scholar 

  41. Selvaraj V, Jayanthi KP, Lakshmikandhan T, Alagar M (2015) Development of polybenzoxazine/TSBA-15 composite from renewable resource cardanol for low k applications. RSC Adv 5:48898–48907

    Article  CAS  Google Scholar 

  42. Wang CF, Su YC, Kuo SW, Huang CF, Sheen YC, Chang FC (2006) Low-surface-free-energy materials based on polybenzoxazines. Angew Chem Int Ed 45:2248–2251

    Article  CAS  Google Scholar 

  43. Krishnadevi K, Selvaraj V (2015) Development of halogen-free flame retardant phosphazene and rice husk ash incorporated benzoxazine blended epoxy composites for microelectronic applications. New J Chem 39:6555–6567

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaithilingam Selvaraj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvaraj, V., Jayanthi, K.P. & Alagar, M. Development of Biocomposites from Agro Wastes for Low Dielectric Applications. J Polym Environ 26, 3655–3669 (2018). https://doi.org/10.1007/s10924-018-1211-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1211-x

Keywords

Navigation