Skip to main content
Log in

Micromorphology and microtexture evaluation of poly(o-ethoxyaniline) films using atomic force microscopy and fractal analysis

  • Original paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The morphology and microtexture of poly(o-ethoxyaniline) thin films deposited on the ITO substrate by electrodeposition were investigated. Cyclic voltammetry and FTIR were used to characterize the molecular structure, while Atomic Force Microscopy (AFM) technique was applied to obtain topographical images. The images were analyzed using commercial and free software. Moreover, three new parameters such as surface entropy, fractal succolarity, and fractal lacunarity were evaluated using recently developed theoretical models. The results showed that the morphology was affected according to the deposition cycles, while the analysis of the molecular structure indicated an increase in the polymer’s conjugation, mainly from 5 to 15 cycles. Structures related to the growth of poly(o-ethoxyaniline) were observed due to the increase in the number of deposition cycles. However, films did not grow completely. The microtexture was homogenized as the number of cycles increased. Furthermore, topographical uniformity was high for all films. Percolation remained low for all films, showing that although the formation of films was not completed, the microtexture of the material tended to homogenize as the film grew. These results revealed that the used tools can quantify the surface parameters, which are of great interest for the study of the corrosive properties of polymeric thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Das TK, Prusty S (2012) Review on conducting polymers and their applications. Polym Plast Technol Eng 51:1487–1500. https://doi.org/10.1080/03602559.2012.710697

    Article  CAS  Google Scholar 

  2. Roković MK, Duić L (2006) Electrochemical synthesis of poly (ortho-ethoxyaniline) from phosphoric and sulphuric acid solutions. Electrochim Acta 51:6045–6050. https://doi.org/10.1016/j.electacta.2005.12.052

    Article  CAS  Google Scholar 

  3. Rajesh, Ahuja T, Kumar D (2009) Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sensors Actuators B Chem 136:275–286. https://doi.org/10.1016/j.snb.2008.09.014

    Article  CAS  Google Scholar 

  4. Aydemir N, Malmström J, Travas-Sejdic J (2016) Conducting polymer based electrochemical biosensors. Phys Chem Chem Phys 18:8264–8277. https://doi.org/10.1039/C5CP06830D

    Article  CAS  PubMed  Google Scholar 

  5. Moon J-M, Thapliyal N, Hussain KK, et al (2018) Conducting polymer-based electrochemical biosensors for neurotransmitters: a review. Biosens Bioelectron 102:540–552. https://doi.org/10.1016/j.bios.2017.11.069

  6. Zhao X, Liu Y, Lu J et al (2012) Temperature-responsive polymer/carbon nanotube hybrids: smart conductive Nanocomposite films for modulating the Bioelectrocatalysis of NADH. Chem – A Eur J 18:3687–3694. https://doi.org/10.1002/chem.201103259

    Article  CAS  Google Scholar 

  7. Zhou Q, Shi G (2016) Conducting polymer-based catalysts. J Am Chem Soc 138:2868–2876. https://doi.org/10.1021/jacs.5b12474

    Article  CAS  PubMed  Google Scholar 

  8. Hou W, Xiao Y, Han G, Lin J-Y (2019) The applications of polymers in solar cells: a review. Polymers (Basel) 11:143. https://doi.org/10.3390/polym11010143

    Article  CAS  Google Scholar 

  9. Kim J, Lee J, You J et al (2016) Conductive polymers for next-generation energy storage systems: recent progress and new functions. Mater Horizons 3:517–535. https://doi.org/10.1039/C6MH00165C

    Article  CAS  Google Scholar 

  10. Gracia R, Mecerreyes D (2013) Polymers with redox properties: materials for batteries, biosensors and more. Polym Chem 4:2206–2214. https://doi.org/10.1039/C3PY21118E

    Article  CAS  Google Scholar 

  11. Yuan L, Wan C, Ye X, Wu F (2016) Facial synthesis of silver-incorporated conductive polypyrrole submicron spheres for Supercapacitors. Electrochim Acta 213:115–123. https://doi.org/10.1016/j.electacta.2016.06.165

    Article  CAS  Google Scholar 

  12. Deshpande PP, Jadhav NG, Gelling VJ, Sazou D (2014) Conducting polymers for corrosion protection: a review. J Coatings Technol Res 11:473–494. https://doi.org/10.1007/s11998-014-9586-7

    Article  CAS  Google Scholar 

  13. Wu G, More KL, Johnston CM, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 80(332):443–447. https://doi.org/10.1126/science.1200832

    Article  CAS  Google Scholar 

  14. Bhadra J, Alkareem A, Al-Thani N (2020) A review of advances in the preparation and application of polyaniline based thermoset blends and composites. J Polym Res 27:122. https://doi.org/10.1007/s10965-020-02052-1

    Article  CAS  Google Scholar 

  15. Bilal S, Farooq S, Shah A-HA, Holze R (2014) Improved solubility, conductivity, thermal stability and corrosion protection properties of poly(o-toluidine) synthesized via chemical polymerization. Synth Met 197:144–153. https://doi.org/10.1016/j.synthmet.2014.09.003

    Article  CAS  Google Scholar 

  16. Sanches EA, Soares JC, Mafud AC et al (2013) Structural and morphological characterization of chloride salt of conducting poly(o-methoxyaniline) obtained at different time synthesis. J Mol Struct 1039:167–173. https://doi.org/10.1016/j.molstruc.2012.12.025

    Article  CAS  Google Scholar 

  17. Piza MA, Constantino CJL, Venancio EC, Mattoso LHC (2003) Interaction mechanism of poly (o-ethoxyaniline) and collagen blends. Polymer (Guildf) 44:5663–5670. https://doi.org/10.1016/S0032-3861(03)00612-8

    Article  CAS  Google Scholar 

  18. Paterno LG, Constantino CJL, Oliveira ON, Mattoso LHC (2002) Self-assembled films of poly(o-ethoxyaniline) complexed with sulfonated lignin. Colloids Surf B Biointerfaces 23:257–262. https://doi.org/10.1016/S0927-7765(01)00266-1

    Article  CAS  Google Scholar 

  19. Mattoso LHC, Manohar SK, Macdiarmid AG, Epstein AJ (1995) Studies on the chemical syntheses and on the characteristics of polyaniline derivatives. J Polym Sci Part A Polym Chem 33:1227–1234. https://doi.org/10.1002/pola.1995.080330805

    Article  CAS  Google Scholar 

  20. Leite FL, Paterno LG, Borato CE et al (2005) Study on the adsorption of poly(o-ethoxyaniline) nanostructured films using atomic force microscopy. Polymer (Guildf), 46:12503–12510. https://doi.org/10.1016/j.polymer.2005.07.108

  21. Leite FL, Borato CE, da Silva WTL, et al (2007) Atomic force spectroscopy on poly(o-ethoxyaniline) nanostructured films: sensing nonspecific interactions. Microsc microanal 13:304–312. /DOI: https://doi.org/10.1017/S1431927607070262

  22. Mello SV, Mattoso LHC, Santos JR et al (1995) Electrochemical response of poly(o-ethoxyaniline) films produced by different techniques. Electrochim Acta 40:1851–1855. https://doi.org/10.1016/0013-4686(95)00130-7

    Article  CAS  Google Scholar 

  23. Amarnath CA, Kim J, Kim K et al (2008) Nanoflakes to nanorods and nanospheres transition of selenious acid doped polyaniline. Polymer (Guildf) 49:432–437. https://doi.org/10.1016/j.polymer.2007.12.005

    Article  CAS  Google Scholar 

  24. Tran HD, D’Arcy JM, Wang Y et al (2011) The oxidation of aniline to produce “polyaniline”: a process yielding many different nanoscale structures. J Mater Chem 21:3534–3550. https://doi.org/10.1039/C0JM02699A

    Article  CAS  Google Scholar 

  25. Mello HJNPD, Mulato M (2018) Influence of galvanostatic electrodeposition parameters on the structure-property relationships of polyaniline thin films and their use as potentiometric and optical pH sensors. Thin Solid Films 656:14–21. https://doi.org/10.1016/j.tsf.2018.04.022

    Article  CAS  Google Scholar 

  26. Rohom AB, Londhe PU, Mahapatra SK et al (2014) Electropolymerization of polyaniline thin films. High perform Polym 26:641–646. https://doi.org/10.1177/0954008314538081

    Article  CAS  Google Scholar 

  27. Wang H, Lin J, Shen ZX (2016) Polyaniline (PANi) based electrode materials for energy storage and conversion, J Sci Adv Mater Devices. 1:225–255. https://doi.org/10.1016/j.jsamd.2016.08.001

  28. Raghunathan A, Kahol PK, McCormick BJ (1999) Electron localization studies of alkoxy polyanilines. Synth Met 100:205–216. https://doi.org/10.1016/S0379-6779(99)00008-9

    Article  CAS  Google Scholar 

  29. Chaudhari S, Patil PP (2007) Corrosion protective poly(o-ethoxyaniline) coatings on copper. Electrochim Acta 53:927–933. https://doi.org/10.1016/j.electacta.2007.08.002

    Article  CAS  Google Scholar 

  30. Shinde V, Patil PP (2010) Evaluation of corrosion protection performance of poly(o-ethyl aniline) coated copper by electrochemical impedance spectroscopy. Mater Sci Eng B 168:142–150. https://doi.org/10.1016/j.mseb.2009.11.008

    Article  CAS  Google Scholar 

  31. Shinde VP (2018) Study of water transport characteristics of poly(o-ethylaniline) coatings: corrosion mechanism. Ionics (Kiel) 24:605–615. https://doi.org/10.1007/s11581-017-2213-8

    Article  CAS  Google Scholar 

  32. Cena CR, Malmonge LF, Malmonge JA (2017) Layer-by-layer thin films of polyaniline alternated with natural rubber and their potential application as a chemical sensor. J Polym Res 24:1–7. https://doi.org/10.1007/s10965-016-1170-7

    Article  CAS  Google Scholar 

  33. Raoufi D, Hosseinpanahi F, Raoufi D, Hosseinpanahi F (2012) Surface morphology dynamics in ITO thin films. J Mod Phys 03:645–651. https://doi.org/10.4236/jmp.2012.38088

    Article  CAS  Google Scholar 

  34. Schmahling J (2006) Statistical characterization of technical surface microstructure

  35. Sayyad Amin J, Nikooee E, Ayatollahi S, Alamdari A (2010) Investigating wettability alteration due to asphaltene precipitation: imprints in surface multifractal characteristics. Appl Surf Sci 256:6466–6472. https://doi.org/10.1016/j.apsusc.2010.04.036

    Article  CAS  Google Scholar 

  36. Dallaeva D, Ţălu Ş, Stach S et al (2014) AFM imaging and fractal analysis of surface roughness of AlN epilayers on sapphire substrates. Appl Surf Sci 312:81–86. https://doi.org/10.1016/j.apsusc.2014.05.086

    Article  CAS  Google Scholar 

  37. Vilt SG, Caswell CJ, Tuberquia JC et al (2012) Effect of roughness on the microscale friction of hydrocarbon films. J Phys Chem C 116:21795–21801. https://doi.org/10.1021/jp305527h

    Article  CAS  Google Scholar 

  38. Xu L, Karunakaran RG, Guo J, Yang S (2012) Transparent, Superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles. ACS Appl Mater Interfaces 4:1118–1125. https://doi.org/10.1021/am201750h

    Article  CAS  PubMed  Google Scholar 

  39. Cho KL, Liaw II, Wu AH-F, Lamb RN (2010) Influence of roughness on a transparent superhydrophobic coating. J Phys Chem C 114:11228–11233. https://doi.org/10.1021/jp103479k

    Article  CAS  Google Scholar 

  40. Sedlaček M, Podgornik B, Vižintin J (2012) Correlation between standard roughness parameters skewness and kurtosis and tribological behaviour of contact surfaces. Tribol Int 48:102–112. https://doi.org/10.1016/j.triboint.2011.11.008

    Article  CAS  Google Scholar 

  41. Gong Y, Misture ST, Gao P, Mellott NP (2016) Surface roughness measurements using power spectrum density analysis with enhanced spatial correlation length. J Phys Chem C 120:22358–22364. https://doi.org/10.1021/acs.jpcc.6b06635

    Article  CAS  Google Scholar 

  42. Senthilkumar M, Sahoo NK, Thakur S, Tokas RB (2005) Characterization of microroughness parameters in gadolinium oxide thin films: a study based on extended power spectral density analyses. Appl Surf Sci 252:1608–1619. https://doi.org/10.1016/j.apsusc.2005.02.122

    Article  CAS  Google Scholar 

  43. Yuan CQ, Li J, Yan XP, Peng Z (2003) The use of the fractal description to characterize engineering surfaces and wear particles. Wear 255:315–326. https://doi.org/10.1016/S0043-1648(03)00206-0

    Article  CAS  Google Scholar 

  44. Yadav RP, Dwivedi S, Mittal AK et al (2012) Fractal and multifractal analysis of LiF thin film surface. Appl Surf Sci 261:547–553. https://doi.org/10.1016/j.apsusc.2012.08.053

    Article  CAS  Google Scholar 

  45. Yadav RP, Kumar M, Mittal AK, Pandey AC (2015) Fractal and multifractal characteristics of swift heavy ion induced self-affine nanostructured BaF 2 thin film surfaces. Chaos An Interdiscip J Nonlinear Sci 25:083115. https://doi.org/10.1063/1.4928695

    Article  CAS  Google Scholar 

  46. Mandelbrot BB, Wheeler JA (1983) The fractal geometry of nature. Am J Phys 51:286–287. https://doi.org/10.1119/1.13295

    Article  Google Scholar 

  47. Consolin Filho N, de Leite FL, Carvalho ER et al (2007) Study of poly(o-Ethoxyaniline) interactions with herbicides and evaluation of conductive polymer potential used in electrochemical sensors. J Braz Chem Soc 18:577–584. https://doi.org/10.1590/S0103-50532007000300013

    Article  CAS  Google Scholar 

  48. Leite FL, de Oliveira NM, Paterno LG et al (2007) Nanoscale conformational ordering in polyanilines investigated by SAXS and AFM. J Colloid Interface Sci 316:376–387. https://doi.org/10.1016/j.jcis.2007.08.069

    Article  CAS  PubMed  Google Scholar 

  49. de Sousa FDB, Scuracchio CH (2014) The use of atomic force microscopy as an important technique to analyze the dispersion of nanometric fillers and morphology in nanocomposites and polymer blends based on elastomers. Polímeros 24:661–672. https://doi.org/10.1590/0104-1428.1648

    Article  CAS  Google Scholar 

  50. Silva-Moraes MO, Garcia-Basabe Y, de Souza RFB et al (2018) Geometry-dependent DNA-TiO2 immobilization mechanism: a spectroscopic approach. Spectrochim Acta Part A Mol Biomol Spectrosc 199:349–355. https://doi.org/10.1016/J.SAA.2018.03.081

    Article  CAS  Google Scholar 

  51. Digital Surf - Surface Imaging, Analysis and Metrology Software

  52. (2012) ISO – ISO 25178-2:2012 – Geometrical product specifications (GPS)—Surface texture: Areal—Part 2: Terms, definitions and surface texture parameters. https://www.iso.org/standard/42785.html. Accessed 11 May 2020

  53. Horcas I, Fernández R, Gómez-Rodríguez JM et al (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78:013705. https://doi.org/10.1063/1.2432410

    Article  CAS  PubMed  Google Scholar 

  54. Khulbe KC, Feng CY, Matsuura T (2008) Synthetic polymeric membranes.1st. edn. Springer, Berlin

    Google Scholar 

  55. Matos RS, Lopes GAC, Ferreira NS et al (2018) Superficial characterization of kefir biofilms associated with Açaí and Cupuaçu extracts. Arab J Sci Eng 43:3371–3379. https://doi.org/10.1007/s13369-017-3024-y

    Article  CAS  Google Scholar 

  56. Nosonovsky M (2010) Entropy in tribology: in the search for applications. Entropy 12:1345–1390. https://doi.org/10.3390/e12061345

    Article  CAS  Google Scholar 

  57. Citing RStudio, RStudio Support

  58. Henebry GM, Kux HJH (1995) Lacunarity as a texture measure for SAR imagery. Int J Remote Sens 16:565–571. https://doi.org/10.1080/01431169508954422

    Article  Google Scholar 

  59. Nečas D, Klapetek P (2012) Gwyddion: an open-source software for SPM data analysis. Cent Eur J Phys 10:181–188. https://doi.org/10.2478/s11534-011-0096-2

    Article  Google Scholar 

  60. de Melo RHC, Conci A (2008) Succolarity: defining a method to calculate this fractal measure. In: 2008 15th international conference on systems, Signals and Image Processing. IEEE, pp. 291–294

  61. Ţălu Ş, Abdolghaderi S, Pinto EP et al (2020) Advanced fractal analysis of nanoscale topography of Ag/DLC composite synthesized by RF-PECVD. Surf Eng 36:713–719. https://doi.org/10.1080/02670844.2019.1710937

    Article  CAS  Google Scholar 

  62. Omar M, Salcedo C, Ronald R et al (2016) Study fractal leaf surface of the plant species Copaifera sp. using the microscope atomic-force-AFM. Rev ECIPerú 13:10–16. https://doi.org/10.33017/RevECIPeru2016.0002/

    Article  Google Scholar 

  63. Oreški S (2012) Programsko okolje Force 3.0 : kratek priročnik za uporabo. Fakulteta za kemijo in kemijsko tehnologijo

  64. de Lucena LRR, Xavier Junior SF, Stosic T, Stosic B (2018) Lacunarity analysis of daily rainfall data in Pernambuco, Brazil. Acta Sci Technol 40:36655. https://doi.org/10.4025/actascitechnol.v40i1.36655

    Article  Google Scholar 

  65. Silva AS, Soares JC, Carolina A et al (2014) Structural and morphological characterization of Poly(o-ethoxyaniline) Emeraldine-salt form using FTIR, XRD, LeBail Method and SEM. J Mol Struct. https://doi.org/10.1016/j.molstruc.2014.04.039

  66. Noppakuadrittidej P, Vailikhit V, Teesetsopon P et al (2018) Copper incorporation in Mn2+−doped Sn2S3 nanocrystals and the resultant structural, optical, and electrochemical characteristics. Ceram Int 44:13973–13985. https://doi.org/10.1016/j.ceramint.2018.04.247

    Article  CAS  Google Scholar 

  67. Leite FL, Alves WF, Mir M et al (2008) TEM, XRD and AFM study of poly(o-ethoxyaniline) films: new evidence for the formation of conducting islands. Appl Phys A 93:537. https://doi.org/10.1007/s00339-008-4686-9

    Article  CAS  Google Scholar 

  68. Chihi A, Bessais B (2017) Characterization and photoelectrochemical properties of CICS thin films grown via an electrodeposition route. RSC Adv 7:29469–29480. https://doi.org/10.1039/C7RA04330A

    Article  CAS  Google Scholar 

  69. Aydın M, Aydın EB, Sezgintürk MK (2018) A disposable immunosensor using ITO based electrode modified by a star-shaped polymer for analysis of tumor suppressor protein p53 in human serum. Biosens Bioelectron 107:1–9. https://doi.org/10.1016/j.bios.2018.02.017

    Article  CAS  PubMed  Google Scholar 

  70. Aydın EB, Aydın M, Sezgintürk MK (2018) Electrochemical immunosensor based on chitosan/conductive carbon black composite modified disposable ITO electrode: an analytical platform for p53 detection. Biosens Bioelectron 121:80–89. https://doi.org/10.1016/j.bios.2018.09.008

    Article  CAS  PubMed  Google Scholar 

  71. Matos RS, Pinto EP, Ramos GQ, et al (2020) Stereometric characterization of kefir microbial films associated with Maytenus rigida extract. Microsc Res Tech Jemt 23532. https://doi.org/10.1002/jemt.23532

  72. Țălu Ș, Ghaderi A, Stępień K, Mwema FM (2019) Advanced micromorphology analysis of cu/Fe NPs thin films. IOP Conf Ser Mater Sci Eng 611:012016. https://doi.org/10.1088/1757-899X/611/1/012016

    Article  Google Scholar 

  73. Ansari F, Granda LA, Joffe R et al (2017) Experimental evaluation of anisotropy in injection molded polypropylene/wood fiber biocomposites. Compos Part A Appl Sci Manuf 96:147–154. https://doi.org/10.1016/j.compositesa.2017.02.003

    Article  CAS  Google Scholar 

  74. Heshmati V, Zolali AM, Favis BD (2017) Morphology development in poly (lactic acid)/polyamide11 biobased blends: chain mobility and interfacial interactions. Polymer (Guildf) 120:197–208. https://doi.org/10.1016/j.polymer.2017.05.056

    Article  CAS  Google Scholar 

  75. Arman A, Ţălu Ş, Luna C et al (2015) Micromorphology characterization of copper thin films by AFM and fractal analysis. J Mater Sci Mater Electron 26:9630–9639. https://doi.org/10.1007/s10854-015-3628-5

    Article  CAS  Google Scholar 

  76. Jing C, Tang W (2016) Ga-doped ZnO thin film surface characterization by wavelet and fractal analysis. Appl Surf Sci 364:843–849. https://doi.org/10.1016/j.apsusc.2015.12.234

    Article  CAS  Google Scholar 

  77. Yadav RP, Kumar T, Baranwal V et al (2017) Fractal characterization and wettability of ion treated silicon surfaces. J Appl Phys 121:055301. https://doi.org/10.1063/1.4975115

    Article  CAS  Google Scholar 

  78. Astinchap B (2019) Fractal and statistical characterization of Ti thin films deposited by RF-magnetron sputtering: the effects of deposition time. Optik (Stuttg) 178:231–242. https://doi.org/10.1016/j.ijleo.2018.10.050

    Article  CAS  Google Scholar 

  79. Shakoury R, Rezaee S, Mwema F et al (2020) Multifractal and optical bandgap characterization of Ta2O5 thin films deposited by electron gun method. Opt Quantum Electron 52. https://doi.org/10.1007/s11082-019-2173-5

  80. Ţəlu Ş, Patra N, Salerno M (2015) Micromorphological characterization of polymer-oxide nanocomposite thin films by atomic force microscopy and fractal geometry analysis. In: Progress in Organic Coatings. Elsevier, pp. 50–56

  81. Ţălu Ş, Bramowicz M, Kulesza S, Solaymani S (2018) Topographic characterization of thin film field-effect transistors of 2,6-diphenyl anthracene (DPA) by fractal and AFM analysis. Mater Sci Semicond Process 79:144–152. https://doi.org/10.1016/j.mssp.2018.02.008

    Article  CAS  Google Scholar 

  82. Sobola D, Talu S, Sadovsky P et al (2017) Application of afm measurement and fractal analysis to study the surface of natural optical structures. Adv Electr Electron Eng 15:569–576. https://doi.org/10.15598/aeee.v15i3.2242

    Article  Google Scholar 

  83. Sobola D, Ţălu Ş, Solaymani S, Grmela L (2017) Influence of scanning rate on quality of AFM image: study of surface statistical metrics. Microsc Res Tech 80:1328–1336. https://doi.org/10.1002/jemt.22945

    Article  PubMed  Google Scholar 

  84. Matos RS, Ramos GQ, da Fonseca Filho HD, Ţălu Ş (2020) Advanced micromorphology study of microbial films grown on kefir loaded with Açaí extract. Micron. https://doi.org/10.1016/j.micron.2020.102912

  85. de Oliveira LM, Matos RS, Campelo PH et al (2020) Evaluation of the nanoscale surface applied to biodegradable nanoparticles containing Allium sativum essential oil. Mater Lett 275:128111. https://doi.org/10.1016/j.matlet.2020.128111

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique Duarte da Fonseca Filho.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, R.M., de Souza, C.C., Gandarilla, A.M.D. et al. Micromorphology and microtexture evaluation of poly(o-ethoxyaniline) films using atomic force microscopy and fractal analysis. J Polym Res 27, 299 (2020). https://doi.org/10.1007/s10965-020-02262-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02262-7

Keywords

Navigation