Skip to main content
Log in

A novel multi-triggered natural rubber (NR)/beeswax (BW)/carbon nanotube (CNT) shape memory bio-nanocomposite

  • Original paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The shape memory properties of sulfur crosslinked natural rubber/beeswax (NR/BW) bio-blends and nanocomposites at three blending compositions (8:2, 6:4, and 4:6) were investigated. The melting temperature of beeswax was used as the switching temperature in the one-way shape memory process. The addition of multi-walled carbon nanotube (CNT) into the NR/BW matrix was helpful in not only improving the beeswax dispersion but also serving the near-infrared absorber to remotely trigger the shape memory process. Most surprisingly, the crystal orientation of beeswax in the natural rubber matrix was parallel to the stretching direction. In addition, the NR/BW blends and nanocomposites demonstrated the THF and acetone solvent vapor-triggered reversible shape memory behavior, which was hardly achieved without applying external stress and pre-soaking treatment as seen in the literature. This simple blending approach offers tremendous possibilities to prepare bio-based blends and nanocomposites with reversible shape memory properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: past, present and future developments. Prog Polym Sci 49(50):3–33

    Google Scholar 

  2. Ratna D, Karger-Kocsis J (2008) Recent advances in shape memory polymers and composites: a review. J Mater Sci 43(1):254–269

    CAS  Google Scholar 

  3. Leng J, Lan X, Liu Y, Du S (2011) Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci 56(7):1077–1135

    CAS  Google Scholar 

  4. Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer 54(9):2199–2221

    CAS  Google Scholar 

  5. Lu H, Lei M, Yao Y, Yu K, Fu YQ (2014) Shape memory polymer nanocomposites: nano-reinforcement and multifunctionalization. Nanosci Nanotechnol Lett 6(9):772–786

    Google Scholar 

  6. Mu T, Liu L, Lan X, Liu Y, Leng J (2018) Shape memory polymers for composites. Compos Sci Technol 160:169–198

    CAS  Google Scholar 

  7. Thomsen DL, Keller P, Naciri J, Pink R, Jeon H, Shenoy D, Ratna BR (2001) Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules 34(17):5868–5875

    CAS  Google Scholar 

  8. Tajbakhsh AR, Terentjev EM (2001) Spontaneous thermal expansion of nematic elastomers. Eur Phys J E 6(2):181–188

    CAS  Google Scholar 

  9. Chung T, Rorno-Uribe A, Mather PT (2008) Two-way reversible shape memory in a semicrystalline network. Macromolecules 41(1):184–192

    CAS  Google Scholar 

  10. Zotzmann J, Behl M, Hofmann D, Lendlein A (2010) Reversible triple-shape effect of polymer networks containing polypentadecalactone-and poly(ε-caprolactone)-segments. Adv Mater 22(31):3424–3429

    CAS  PubMed  Google Scholar 

  11. Bothe M, Pretsch T (2012) Two-way shape changes of a shape-memory poly(ester urethane). Macromol Chem Phys 213(22):2378–2385

    CAS  Google Scholar 

  12. Bothe M, Pretsch T (2013) Bidirectional actuation of a thermoplastic polyurethane elastomer. J Mater Chem A 1(46):14491–14497

    CAS  Google Scholar 

  13. Behl M, Kratz K, Zotzmann J, Nöchel U, Lendlein A (2013) Reversible bidirectional shape-memory polymers. Adv Mater 25(32):4466–4469

    CAS  PubMed  Google Scholar 

  14. Qian C, Dong Y, Zhu Y, Fu Y (2016) Two-way shape memory behavior of semi-crystalline elastomer under stress-free condition. Smart Mater Struct 25(8):085023

    Google Scholar 

  15. Gao Y, Liu W, Zhu S (2017) Polyolefin thermoplastics for multiple shape and reversible shape memory. ACS Appl Mater Interfaces 9(5):4882–4889

    CAS  PubMed  Google Scholar 

  16. Fan LF, Rong MZ, Zhang MQ, Chen XD (2017) A facile approach toward scalable fabrication of reversible shape-memory polymers with bonded elastomer microphases as internal stress provider. Macromol Rapid Commun 38(16):1700124

    Google Scholar 

  17. Westbrook KK, Mather PT, Parakh V, Dunn ML, Ge Q, Lee BM, Qi HJ (2011) Two-way reversible shape memory effects in a free-standing polymer composite. Smart Mater Struct 20(6):065010

    Google Scholar 

  18. Chen S, Hu J, Zhuo H, Zhu Y (2008) Two-way shape memory effect in polymer laminates. Mater Lett 62(25):4088–4090

    CAS  Google Scholar 

  19. Wu Y, Hu J, Han J, Zhu Y, Huang H, Li J, Tang B (2014) Two-way shape memory polymer with “switch-spring” composition by interpenetrating polymer network. J Mater Chem A 2(44):18816–18822

    CAS  Google Scholar 

  20. Li J, Rodgers WR, Xie T (2011) Semi-crystalline two-way shape memory elastomer. Polymer 52(23):5320–5325

    CAS  Google Scholar 

  21. Behl M, Kratz K, Noechel U, Sauter T, Lendlein A (2013) Temperature-memory polymer actuators. Proc Natl Acad Sci 110(31):12555–12559

    CAS  PubMed  Google Scholar 

  22. Pandini S, Passera S, Messori M, Paderni K, Toselli M, Gianoncelli A, Bontempi E, Riccò T (2012) Two-way reversible shape memory behaviour of crosslinked poly(ε-caprolactone). Polymer 53(9):1915–1924

    CAS  Google Scholar 

  23. Pandini S, Baldi F, Paderni K, Messori M, Toselli M, Pilati F, Gianoncelli A, Brisotto M, Bontempi E, Riccò T (2013) One-way and two-way shape memory behaviour of semi-crystalline networks based on sol–gel cross-linked poly(ε-caprolactone). Polymer 54(16):4253–4265

    CAS  Google Scholar 

  24. Hou G, Wang F, Qu Z, Cheng Z, Zhang Y, Cai S, Xie T, Feng X (2018) Reversible semicrystalline polymer as actuators driven by organic solvent vapor. Macromol Rapid Commun 39(7):1700716

    Google Scholar 

  25. Gu L, Jiang Y, Hu J (2018) Bioinspired poly(vinyl alcohol)-silk hybrids: two-way water-sensitive shape-memory materials. Mater Today Communications 17:419–426

    CAS  Google Scholar 

  26. Lai S-M, Guo G-L (2019) Two-way shape memory effects of sulfur vulcanized natural rubber (NR) and NR/paraffin wax (PW)/carbon nanotube (CNT) nanocomposites. Polym Test 77:105892

    CAS  Google Scholar 

  27. Wee JS-H, Chai AB, Ho J-H (2017) Fabrication of shape memory natural rubber using palmitic acid. J King Saud Univ Sci 29(4):494–501

    Google Scholar 

  28. Lin GY, Liu SM, Dong FC (2014) Study on shape-memory mechanism and properties of NR/TPI blends. Appl Mech Mater 467:146–151

    Google Scholar 

  29. Yuan D, Chen Z, Xu C, Chen K, Chen Y (2015) Fully biobased shape memory material based on novel cocontinuous structure in poly(lactic acid)/natural rubber TPVs fabricated via peroxide-induced dynamic vulcanization and in situ interfacial compatibilization. ACS Sustain Chem Eng 3(11):2856–2865

    CAS  Google Scholar 

  30. Brostowitz NR, Weiss RA, Cavicchi KA (2014) Facile fabrication of a shape memory polymer by swelling cross-linked natural rubber with stearic acid. ACS Macro Lett 3(4):374–377

    CAS  Google Scholar 

  31. Pantoja M, Lin Z, Cakmak M, Cavicchi KA (2018) Structure–property relationships of fatty acid swollen, crosslinked natural rubber shape memory polymers. J Polym Sci B Polym Phys 56(8):673–688

    CAS  Google Scholar 

  32. Lai S-M, Guo G-L, Han K-T, Huang P-S, Huang Z-L, Jiang M-J, Zou Y-R (2019) Properties and characterization of near infrared-triggered natural rubber (NR)/carnauba wax (CW)/carbon nanotube (CNT) shape memory bio-nanocomposites. J Polym Res 26:86

    Google Scholar 

  33. Katzenberg F, Heuwers B, Tiller JC (2011) Superheated rubber for cold storage. Adv Mater 23(16):1909–1911

    CAS  PubMed  Google Scholar 

  34. Quitmann D, Dibolik M, Katzenberg F, Tiller JC (2014) Altering the trigger behavior of programmed shape memory natural rubber (SMNR) by solvent vapor. Macromol Mater Eng 300(1):25–30

    Google Scholar 

  35. Quitmann D, Reinders FM, Heuwers B, Katzenberg F, Tiller JC (2015) Programming of shape memory natural rubber for near-discrete shape transitions. ACS Appl Mater Interfaces 7(3):1486–1490

    CAS  PubMed  Google Scholar 

  36. Quitmann D, Gushterov N, Sadowski G, Katzenberg F, Tiller JC (2013) Solvent-sensitive reversible stress-response of shape memory natural rubber. ACS Appl Mater Interfaces 5(9):3504–3507

    CAS  PubMed  Google Scholar 

  37. Heuwers B, Quitmann D, Katzenberg F, Tiller JC (2012) Stress-induced melting of crystals in natural rubber: a new way to tailor the transition temperature of shape memory polymers. Macromol Rapid Commun 33(18):1517–1522

    CAS  PubMed  Google Scholar 

  38. Heuwers B, Beckel A, Krieger A, Katzenberg F, Tiller JC (2013) Shape-memory natural rubber: an exceptional material for strain and energy storage. Macromol Chem Phys 214(8):912–923

    CAS  Google Scholar 

  39. Heuwers B, Quitmann D, Hoeher R, Reinders FM, Tiemeyer S, Sternemann C, Tolan M, Katzenberg F, Tiller JC (2013) Stress-induced stabilization of crystals in shape memory natural rubber. Macromol Rapid Commun 34(2):180–184

    CAS  PubMed  Google Scholar 

  40. Li G, Zhang H, Fortin D, Fan W, Xia H, Zhao Y (2016) A composite material with room temperature shape processability and optical repair. J Mater Chem C 4(25):5932–5939

    CAS  Google Scholar 

  41. Chen S, Zhan Q, Feng J (2017) 3D printing of tunable shape memory polymer blends. J Mater Chem 5(33):8361–8365

    CAS  Google Scholar 

  42. Zhang Q, Feng J (2013) Difunctional olefin block copolymer/paraffin form-stable phase change materials with simultaneous shape memory property. Sol Energy Mater Sol Cells 117:259–266

    CAS  Google Scholar 

  43. Zhang Q, Hua W, Feng J (2016) A facile strategy to fabricate multishape memory polymers with controllable mechanical properties. Macromol Rapid Commun 37(15):1262–1267

    CAS  PubMed  Google Scholar 

  44. Gaillard Y, Mija A, Burr A, Darque-Ceretti E, Felder E, Sbirrazzuoli N (2011) Green material composites from renewable resources: polymorphic transitions, and phase diagram of beeswax/rosin resin. Thermochim Acta 521(1–2):90–97

    CAS  Google Scholar 

  45. Kameda T, Tamada Y (2009) Variable-temperature 13 C solid-state NMR study of the molecular structure of honeybee wax and silk. Int J Biol Macromol 44(1):64–69

    CAS  PubMed  Google Scholar 

  46. Lee EJ, Park JK, Lee Y-S, Lim K-H (2010) Comparison of thermal properties of crude by-product polyolefin wax, fractionated paraffin wax and their blend. Korean J Chem Eng 27(2):524–530

    CAS  Google Scholar 

  47. Yang Z, Chen Y, Wang Q, Wang T (2016) High performance multiple-shape memory behaviors of poly(benzoxazole-co-imide)s. Polymer 88:19–28

    CAS  Google Scholar 

  48. Mohamed MG, Lin R-C, Kuo S-W (2017) In: Ishida H, Froimowicz P (eds) Advanced and emerging polybenzoxazine science and technology1st edn. Esevier

  49. Shih H-K, Hsieh C-C, Mohamed MG, Zhu C-Y, Kuo S-W (2016) Ternary polybenzoxazine/POSS/SWCNT hybrid nanocomposites stabilized through supramolecular interactions. Soft Matter 12(6):1847–1858

    CAS  PubMed  Google Scholar 

  50. Le HH, Hait S, Das A, Wießner S, Stöckelhuber KW, Böhme F, Reuter U, Naskar K, Heinrich G, H-j R (2017) Self-healing properties of carbon nanotube filled natural rubber/bromobutyl rubber blends. Express Polym Lett 11(3):230–242

    CAS  Google Scholar 

  51. Cardinaud R, McNally T (2013) Localization of MWCNTs in PET/LDPE blends. Eur Polym J 49(6):1287–1297

    CAS  Google Scholar 

  52. Zhang W, Lu P, Qian L, Xiao H (2014) Fabrication of superhydrophobic paper surface via wax mixture coating. Chem Eng J 250:431–436

    CAS  Google Scholar 

  53. Zhao P, Li L, Luo Y, Lv Z, Xu K, Li S, Zhong J, Wang Z, Peng Z (2016) Effect of blend ratio on the morphology and electromagnetic properties of nanoparticles incorporated natural rubber blends. Composites Part B 99:216–223

    CAS  Google Scholar 

  54. Xiao Y, Zhou S, Wang L, Gong T (2010) Electro-active shape memory properties of poly(ε-caprolactone)/functionalized multiwalled carbon nanotube nanocomposite. ACS Symp Ser 2(12):3506–3514

    CAS  Google Scholar 

  55. Anthamatten M, Roddecha S, Li J (2013) Energy storage capacity of shape-memory polymers. Macromolecules 46(10):4230–4234

    CAS  Google Scholar 

  56. Birdwell BF, Jessen FW (1966) Crystallization of petroleum waxes. Nature 209:366–368

    CAS  Google Scholar 

  57. Du J, Liu D, Zhang Z, Liu L, Yao X, Wan D, Pu H, Lu Z (2017) Dual-responsive triple-shape memory polyolefin elastomer/stearic acid composite. Polymer 126:206–210

    CAS  Google Scholar 

Download references

Acknowledgments

A grant-in-aid from the R.O.C government under MOST 105-2221-E-197-027-MY3 is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Mou Lai.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2287 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, SM., Guo, GL., Xie, YC. et al. A novel multi-triggered natural rubber (NR)/beeswax (BW)/carbon nanotube (CNT) shape memory bio-nanocomposite. J Polym Res 27, 283 (2020). https://doi.org/10.1007/s10965-020-02256-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02256-5

Keywords

Navigation