Skip to main content

Advertisement

Log in

Mechanical, electrical and thermal properties of graphene oxide-carbon nanotube/ ABS hybrid polymer nanocomposites

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Multiwalled carbon nanotubes (MWCNTs), functionalized carbon nanotubes (FCNTs) and graphene oxide-carbon nanotube (GCNTs) hybrid Bucky paper (BP) reinforced acrylonitrile-butadiene-styrene (ABS) composites are prepared via vacuum filtration followed by hot compression molding. The nanomechanical, electrical and thermal properties of these BP reinforced ABS composites are studied. The nanoindentation hardness and elastic modulus of GCNTs-ABS hybrid composites reached to 389.98±91.79 MPa and 7669.6±1179.12 MPa respectively. Other nanomechanical parameters such as plastic index parameter, elastic recovery, the ratio of residual displacement after load removal and displacement at maximum load are also investigated. The improved nanomechanical properties are correlated with Raman spectroscopy and scanning electron microscopy (SEM). It is found that GCNTs and their composites showed the higher value of defect density. The maximum value of defect density range for GCNTs and GCNTs-ABS is (297.4 to 159.6) and (16.0 to11.6), respectively. The higher defect density of GCNTs indicates that the interfacial interaction between the ABS, which was further correlated with electrical and thermal properties. Additionally, the through-plane electrical conductivities of MWCNTs, FCNTs and GCNTs based ABS composites were 6.5±0.6, 4.5±0.7 and 6.97±1.2 S/cm respectively and thermal conductivities of MWCNTs, FCNTs and GCNTs reinforced ABS composites; 1.80, 1.70 and 1.98 W/mK respectively. These GCNTs-ABS composites with this value of thermal conductivity can be used in various applications of efficient heat dissipative materials for electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Scheme 1

Similar content being viewed by others

References

  1. Maitra U, Prasad KE, Ramamurty U, Rao CNR (2009) Mechanical properties of nanodiamond-reinforced polymer-matrix composites. Solid State Commun 149(39):1693–1697

    CAS  Google Scholar 

  2. Raghunath S, Kumar S, Samal SK, Mohanty S, Nayak SK (2018) PLA/ESO/MWCNT nanocomposite: a study on mechanical, thermal and electroactive shape memory properties. J Polym Res 25(5):126

    Google Scholar 

  3. Kong Q, Luo Z, Wang Y, Wang B (2018) Fabrication of super-stretchable and electrical conductive membrane of spandex/multi-wall carbon nanotube/reduced graphene oxide composite. J Polym Res 25(11):231

    Google Scholar 

  4. Palacios JA, Ganesan R (2019) Enhancement of stiffness and dynamic mechanical properties of polymers using single-walled-carbon-nanotube–a multiscale finite element formulation study. J Polym Res 26(5):124

    Google Scholar 

  5. Rafiee R, Eskandariyun A (2020) Predicting Young’s modulus of agglomerated graphene/polymer using multi-scale modeling. Compos Struct 245:112324

    Google Scholar 

  6. Fu X, Ramos M, al-Jumaily AM, Meshkinzar A, Huang X (2019) Stretchable strain sensor facilely fabricated based on multi-wall carbon nanotube composites with excellent performance. J Mater Sci 54(3):2170–2180

    CAS  Google Scholar 

  7. Ajayan PM, Zhou OZ (2001) Applications of carbon nanotubes. In Carbon nanotubes. Springer. p. 391–425

  8. Liu Y, Kumar S (2014) Polymer/carbon nanotube nano composite fibers–a review. ACS Appl Mater Interfaces 6(9):6069–6087

    CAS  PubMed  Google Scholar 

  9. Esmaeili A, Sbarufatti C, Jiménez-Suárez A, Ureña A, Hamouda AMS (2020) A comparative study of the incorporation effect of SWCNT-OH and DWCNT with varied microstructural defects on tensile and impact strengths of epoxy based nanocomposite. J Polym Res 27:152

    CAS  Google Scholar 

  10. Mathur RB, Singh BP, Pande S (2017) Carbon nanomaterials synthesis, structure, properties and applications

  11. Kadambi SB, Pramoda K, Ramamurty U, Rao CNR (2015) Carbon-Nanohorn-reinforced polymer matrix composites: synergetic benefits in mechanical properties. ACS Appl Mater Interfaces 7(31):17016–17022

    CAS  PubMed  Google Scholar 

  12. Babal AS, Singh BP, Jyoti J, Sharma S, Arya AK, Dhakate SR (2016) Synergistic effect on static and dynamic mechanical properties of carbon fiber-multiwalled carbon nanotube hybrid polycarbonate composites. RSC Adv 6(72):67954–67967

    CAS  Google Scholar 

  13. Jindal P, Jyoti J, Kumar N (2016) Mechanical characterisation of ABS/MWCNT composites under static and dynamic loading conditions. J Mech Eng Sci 10(3):2288–2299

    CAS  Google Scholar 

  14. Garg P, Singh BP, Kumar G, Gupta T, Pandey I, Seth RK, Tandon RP, Mathur RB (2011) Effect of dispersion conditions on the mechanical properties of multi-walled carbon nanotubes based epoxy resin composites. J Polym Res 18(6):1397–1407

    CAS  Google Scholar 

  15. Sharma S (2019) Improved static and dynamic mechanical properties of multiscale bucky paper interleaved Kevlar fiber composites. Carbon 152:631–642

    CAS  Google Scholar 

  16. Sharma S, Pathak AK, Singh VN, Teotia S, Dhakate SR, Singh BP (2018) Excellent mechanical properties of long length multiwalled carbon nanotube bridged Kevlar fabric. Carbon 137:104–117

    CAS  Google Scholar 

  17. Babal A et al (2014) Mechanical and electrical properties of high performance MWCNT/polycarbonate composites prepared by industrial viable twin screw extruder with Back Flow Channel. RSC Adv 4(110):64649–64658

    CAS  Google Scholar 

  18. Jyoti J, Babal AS, Sharma S, Dhakate SR, Singh BP (2018) Significant improvement in static and dynamic mechanical properties of graphene oxide–carbon nanotube acrylonitrile butadiene styrene hybrid composites. J Mater Sci 53(4):2520–2536

    CAS  Google Scholar 

  19. Shi Y-D, Li J, Tan YJ, Chen YF, Wang M (2019) Percolation behavior of electromagnetic interference shielding in polymer/multi-walled carbon nanotube nanocomposites. Compos Sci Technol 170:70–76

    CAS  Google Scholar 

  20. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28(1):1–63

    Google Scholar 

  21. Jyoti J, Basu S, Singh BP, Dhakate SR (2015) Superior mechanical and electrical properties of multiwall carbon nanotube reinforced acrylonitrile butadiene styrene high performance composites. Compos Part B 83:58–65

    CAS  Google Scholar 

  22. Kumar A, Sharma K, Dixit AR (2020) Carbon nanotube-and graphene-reinforced multiphase polymeric composites: review on their properties and applications. J Mater Sci, 1–43

  23. Zhang Y et al (2005) Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438(7065):201–204

    CAS  PubMed  Google Scholar 

  24. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    CAS  PubMed  Google Scholar 

  25. Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10(8):569–581

    CAS  PubMed  Google Scholar 

  26. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224

    CAS  PubMed  Google Scholar 

  27. Alsharaeh EH, Faisal NH, Othman AA, Ahmed R (2013) Evaluation of nanomechanical properties of (styrene–methyl methacrylate) copolymer composites containing graphene sheets. Ind Eng Chem Res 52(50):17871–17881

    CAS  Google Scholar 

  28. Jyoti J, Singh BP, Chockalingam S, Joshi AG, Gupta TK, Dhakate SR (2018) Synergetic effect of graphene oxide-carbon nanotube on nanomechanical properties of acrylonitrile butadiene styrene nanocomposites. Mater Res Express 5(4):045608

    Google Scholar 

  29. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud'Homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331

    CAS  PubMed  Google Scholar 

  30. Wang H, Hao Q, Yang X, Lu L, Wang X (2010) A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale 2(10):2164–2170

    CAS  PubMed  Google Scholar 

  31. Choi BG, Yang MH, Hong WH, Choi JW, Huh YS (2012) 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6(5):4020–4028

    CAS  PubMed  Google Scholar 

  32. Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, Marchenkov AN, Conrad EH, First PN, de Heer WA (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108(52):19912–19916

    CAS  Google Scholar 

  33. Gwon H, Kim HS, Lee KU, Seo DH, Park YC, Lee YS, Ahn BT, Kang K (2011) Flexible energy storage devices based on graphene paper. Energy Environ Sci 4(4):1277–1283

    CAS  Google Scholar 

  34. Li N, Zheng M, Lu H, Hu Z, Shen C, Chang X, Ji G, Cao J, Shi Y (2012) High-rate lithium–sulfur batteries promoted by reduced graphene oxide coating. Chem Commun 48(34):4106–4108

    CAS  Google Scholar 

  35. Jyoti J, Singh BP, Rajput S, Singh VN, Dhakate SR (2016) Detailed dynamic rheological studies of multiwall carbon nanotube-reinforced acrylonitrile butadiene styrene composite. J Mater Sci 51(5):2643–2652

    CAS  Google Scholar 

  36. Jyoti J, Kumar A, Dhakate SR, Singh BP (2018) Dielectric and impedance properties of three dimension graphene oxide-carbon nanotube acrylonitrile butadiene styrene hybrid composites. Polym Test 68:456–466

    CAS  Google Scholar 

  37. Jyoti J, Dhakate SR, Singh BP (2018) Phase transition and anomalous rheological properties of graphene oxide-carbon nanotube acrylonitrile butadiene styrene hybrid composites. Compos Part B 154:337–350

    CAS  Google Scholar 

  38. Wang Z, Cao Y, Pan D, Hu S (2020) Vertically aligned and interconnected graphite and Graphene oxide networks leading to enhanced thermal conductivity of polymer composites. Polymers 12(5):1121

    CAS  PubMed Central  Google Scholar 

  39. Zhang C, Tjiu WW, Liu T, Lui WY, Phang IY, Zhang WD (2011) Dramatically enhanced mechanical performance of nylon-6 magnetic composites with nanostructured hybrid one-dimensional carbon nanotube− two-dimensional clay nanoplatelet heterostructures. J Phys Chem B 115(13):3392–3399

    CAS  PubMed  Google Scholar 

  40. Zhang WD, Phang IY, Liu T (2006) Growth of carbon nanotubes on clay: unique nanostructured filler for high-performance polymer Nanocomposites. Adv Mater 18(1):73–77

    Google Scholar 

  41. Dubois P, Alexandre M (2006) Performant clay/carbon nanotube polymer nanocomposites. Adv Eng Mater 8(3):147–154

    CAS  Google Scholar 

  42. Zhang Q, Zhao M, Liu Y, Cao A, Qian W, Lu Y, Wei F (2009) Energy-absorbing hybrid composites based on alternate carbon-nanotube and inorganic layers. Adv Mater 21(28):2876–2880

    CAS  Google Scholar 

  43. Sun D, Chu C-C, Sue H-J (2010) Simple approach for preparation of epoxy hybrid nanocomposites based on carbon nanotubes and a model clay. Chem Mater 22(12):3773–3778

    CAS  Google Scholar 

  44. Kapoor S, Goyal M, Jindal P (2020) Effect of functionalized multi-walled carbon nanotubes on thermal and mechanical properties of acrylonitrile butadiene styrene nanocomposite. J Polym Res 27(2):40

    CAS  Google Scholar 

  45. Kavimani V, Soorya Prakash K, Thankachan T, Udayakumar R (2020) Synergistic improvement of epoxy derived polymer composites reinforced with Graphene Oxide (GO) plus Titanium di oxide (TiO2). Compos Part B 191:107911

    CAS  Google Scholar 

  46. Zhao MQ, Zhang Q, Jia XL, Huang JQ, Zhang YH, Wei F (2010) Hierarchical composites of single/double-walled carbon nanotubes interlinked flakes from direct carbon deposition on layered double hydroxides. Adv Funct Mater 20(4):677–685

    CAS  Google Scholar 

  47. Shin MK, Lee B, Kim SH, Lee JA, Spinks GM, Gambhir S, Wallace GG, Kozlov ME, Baughman RH, Kim SJ (2012) Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes. Nat Commun 3:650

    PubMed  PubMed Central  Google Scholar 

  48. Chatterjee S, Nafezarefi F, Tai NH, Schlagenhauf L, Nüesch FA, Chu BTT (2012) Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon 50(15):5380–5386

    CAS  Google Scholar 

  49. Gong S et al. (2015) Integrated ternary bioinspired Nanocomposites via synergistic toughening of reduced Graphene oxide and double-walled carbon nanotubes. Acs Nano

  50. Kim NH, Kuila T, Lee JH (2014) Enhanced mechanical properties of a multiwall carbon nanotube attached pre-stitched graphene oxide filled linear low density polyethylene composite. J Mater Chem A 2(8):2681–2689

    CAS  Google Scholar 

  51. Yang Y, He CE, Tang W, Tsui CP, Shi D, Sun Z, Jiang T, Xie X (2014) Judicious selection of bifunctional molecules to chemically modify graphene for improving nanomechanical and thermal properties of polymer composites. J Mater Chem A 2(47):20038–20047

    CAS  Google Scholar 

  52. Fan Z, Wang J, Wang Z, Ran H, Li Y, Niu L, Gong P, Liu B, Yang S (2014) One-pot synthesis of graphene/hydroxyapatite nanorod composite for tissue engineering. Carbon 66:407–416

    CAS  Google Scholar 

  53. Mathur R, Chatterjee S, Singh B (2008) Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties. Compos Sci Technol 68(7–8):1608–1615

    CAS  Google Scholar 

  54. Singh BP et al (2014) Effect of length of carbon nanotubes on electromagnetic interference shielding and mechanical properties of their reinforced epoxy composites. J Nanopart Res 16(1):1–11

    Google Scholar 

  55. Singh B et al (2008) Influence of surface modified MWCNTs on the mechanical, electrical and thermal properties of polyimide nanocomposites. Nanoscale Res Lett 3(11):444–453

    CAS  PubMed Central  Google Scholar 

  56. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    CAS  PubMed  Google Scholar 

  57. Dwivedi N, Kumar S, Malik HK (2011) Nanoindentation measurements on modified diamond-like carbon thin films. Appl Surf Sci 257(23):9953–9959

    CAS  Google Scholar 

  58. Ram HA, Koppad PG, Kashyap K (2013) Nanoindentation studies on MWCNT/aluminum alloy 6061 nanocomposites. Mater Sci Eng A 559:920–923

    CAS  Google Scholar 

  59. Ostovan F, Matori K, Toozandehjani M, Oskoueian A, Yusoff H, Yunus R, Mohamed Ariff A (2016) Nanomechanical behavior of multi-walled carbon nanotubes particulate reinforced aluminum Nanocomposites prepared by ball milling. Materials 9(3):140

    PubMed Central  Google Scholar 

  60. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(06):1564–1583

    CAS  Google Scholar 

  61. Dwivedi N, Kumar S, Rauthan CMS, Panwar OS (2011) Nano indentation measurements on nitrogen incorporated diamond-like carbon coatings. Applied Physics A 102(1):225–230

    CAS  Google Scholar 

  62. Díez-Pascual AM, Naffakh M, Gómez MA, Marco C, Ellis G, Martínez MT, Ansón A, González-Domínguez JM, Martínez-Rubi Y, Simard B (2009) Development and characterization of PEEK/carbon nanotube composites. Carbon 47(13):3079–3090

    Google Scholar 

  63. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409(2):47–99

    Google Scholar 

  64. Papageorgiou DG, Kinloch IA, Young RJ (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90:75–127

    CAS  Google Scholar 

  65. Lucchese MM, Stavale F, Ferreira EHM, Vilani C, Moutinho MVO, Capaz RB, Achete CA, Jorio A (2010) Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48(5):1592–1597

    CAS  Google Scholar 

  66. Cançado LG, Jorio A, Ferreira EHM, Stavale F, Achete CA, Capaz RB, Moutinho MVO, Lombardo A, Kulmala TS, Ferrari AC (2011) Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett 11(8):3190–3196

    PubMed  Google Scholar 

  67. Cancado L et al (2006) General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett 88(16):163106–163106

    Google Scholar 

  68. Shrivastava N et al. (2014) Influence of selective dispersion of MWCNT on electrical percolation of in-situ polymerized high-impact polystyrene/MWCNT nanocomposites. Express Polym Lett. 8(1)

  69. Mott NF, Davis EA (2012) Electronic processes in non-crystalline materials. Oxford University Press, Oxford

    Google Scholar 

  70. Jackson R, Domercq B, Jain R, Kippelen B, Graham S (2008) Stability of doped transparent carbon nanotube electrodes. Adv Funct Mater 18(17):2548–2554

    CAS  Google Scholar 

  71. Kapitza P (1941) The study of heat transfer in helium II. J Phys (USSR) 4(1–6):181–210

    Google Scholar 

  72. Warzoha RJ, Zhang D, Feng G, Fleischer AS (2013) Engineering interfaces in carbon nanostructured mats for the creation of energy efficient thermal interface materials. Carbon 61:441–457

    CAS  Google Scholar 

  73. Feng W, Qin M, Lv P, Li J, Feng Y (2014) A three-dimensional nanostructure of graphite intercalated by carbon nanotubes with high cross-plane thermal conductivity and bending strength. Carbon 77:1054–1064

    CAS  Google Scholar 

  74. Yu A, Itkis ME, Bekyarova E, Haddon RC (2006) Effect of single-walled carbon nanotube purity on the thermal conductivity of carbon nanotube-based composites. Appl Phys Lett 89(13):133102

    Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to DNPL to accord the permission to publish the results. The authors would like to thank Dr. M. Saravanan for thermal conductivity measurement and Mr. J. C Ghawana for their support in preparation of samples in hydraulic press. Authors are also thankful to Mr. Jay Tawale for SEM measurement. One of the author (Jeevan Jyoti) thanks to UGC-JRF for the fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhanu Pratap Singh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1322 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jyoti, J., Arya, A.K., Chockalingam, S. et al. Mechanical, electrical and thermal properties of graphene oxide-carbon nanotube/ ABS hybrid polymer nanocomposites. J Polym Res 27, 282 (2020). https://doi.org/10.1007/s10965-020-02252-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02252-9

Keywords

Navigation