Skip to main content
Log in

Polystyrene supported bromoderivative of 2-oxazolidone – an efficient reagent for microwave assisted bromination reactions

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

We present herein the synthesis and structural characterization of a novel, recyclable and microwave stable polymeric reagent prepared by anchoring bromoderivative of oxazolidone into the 3D matrix of divinylbenzene crosslinked polystyrene and its application for the bromination of alkenes, activated aromatic compounds and for the α-halogenation of ketones under microwave irradiation. The advantages of this protocol include a simple workup procedure, high product yield, shorter reaction time as well as solvent-free reaction pathway. Besides, this new resin was stable under standard laboratory conditions and can be kept for several months without any significant loss of activity.

Grapical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Saikia I, Borah AJ, Phukan P (2016) Use of bromine and Bromo-organic compounds in organic synthesis. Chem Rev 116(12):6837–7042. https://doi.org/10.1021/acs.chemrev.5b00400

    Article  CAS  PubMed  Google Scholar 

  2. Smith K (1995) Advances in Organobromine chemistry II. Elsevier, New York, pp 4–64

    Google Scholar 

  3. Vanotterlo W (2004) Unforeseen formation of 2-bromo-3-hydroxybenzaldehyde by bromination of 3-hydroxybenzaldehyde. Tetrahedron Lett 45:5091–5094. https://doi.org/10.1016/s0040-4039(04)01010-x

    Article  CAS  Google Scholar 

  4. El-Hamshary H, Selim AI, Salahuddin NA, Mandour HS (2015) Clay-polymer Nanocomposite-supported brominating agent. Clay Clay Miner 63(4):328–336. https://doi.org/10.1346/ccmn.2015.0630406

    Article  CAS  Google Scholar 

  5. Rogers JV, Price JA, Wendling MQS, Perry MR, Reid FM, Kiser RC, Graham JS (2011) An assessment of transcriptional changes in porcine skin exposed to bromine vapor. J Biochem Mol Toxicol 25(4):252–262. https://doi.org/10.1002/jbt.20383

    Article  CAS  PubMed  Google Scholar 

  6. Narender N, Krishna Mohan KV, Reddy RV, Srinivasu P, Kulkarni S, Raghavan K (2003) Liquid phase bromination of phenols using potassium bromide and hydrogen peroxide over zeolites. J Mol Catal A Chem 192(1–2):73–77. https://doi.org/10.1016/s1381-1169(02)00131-0

    Article  CAS  Google Scholar 

  7. Tajik H, Mohammadpoor-Baltork I, Albadi J (2007) Bromination of some aromatic compounds with potassium bromide in the presence of Benzyltriphenylphosphonium Peroxodisulfate. Synth Commun 37(2):323–328. https://doi.org/10.1080/00397910601033906

    Article  CAS  Google Scholar 

  8. Adibi H, Hajipour AR, Hashemi M (2007) A convenient and regioselective oxidative bromination of electron-rich aromatic rings using potassium bromide and benzyltriphenylphosphonium peroxymonosulfate under nearly neutral reaction conditions. Tetrahedron Lett 48(7):1255–1259. https://doi.org/10.1016/j.tetlet.2006.12.033

    Article  CAS  Google Scholar 

  9. Stropnik T, Bombek S, Kočevar M, Polanc S (2008) Regioselective bromination of activated aromatic substrates with a ZrBr4/diazene mixture. Tetrahedron Lett 49(11):1729–1733. https://doi.org/10.1016/j.tetlet.2008.01.07

    Article  CAS  Google Scholar 

  10. Khansole SV, Patwari SB, Vibhute AY, Vibhute B (2009) Isoquinolinium bromochromate: an efficient and stable reagent for bromination of hydroxylated aromatic compounds and oxidation of alcohols. Chin Chem Lett 20(3):256–260. https://doi.org/10.1016/j.cclet.2008.11.015

    Article  CAS  Google Scholar 

  11. Borikar SP, Daniel T, Paul V (2009) An efficient, rapid, and regioselective bromination of anilines and phenols with 1-butyl-3-methylpyridinium tribromide as a new reagent/solvent under mild conditions. Tetrahedron Letters 50(9):1007–1009. https://doi.org/10.1016/j.tetlet.2008.12.053

    Article  CAS  Google Scholar 

  12. Zupan M, Segatin N (1994) Bromination of organic molecules with polymer-supported bromine complexes. Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry 24(18):2617–2626. https://doi.org/10.1080/00397919408010574

    Article  CAS  Google Scholar 

  13. Lakouraj MM, Tajbakhsh M, Mokhtary M (2005) Poly(vinylpyrrolidone)-bromide complex; a mild and efficient reagent for selective Bromination of alkenes and oxidation of alcohols. J Chem Res 8:481–483. https://doi.org/10.3184/030823405774663246

    Article  Google Scholar 

  14. Koshy EP, Zacharias J, Rajasekharan Pillai VN (2006) Poly (N-vinylpyrrolidone)-hydrotribromide: a new gel type resin for alcohol oxidation ad alkene dibromination. Reactive & Functional Polymers 66(8):845–850. https://doi.org/10.1016/j.reactfunctpolym.2005.11.0

    Article  CAS  Google Scholar 

  15. Mokhtary M, Lakouraj MM (2011) Polyvinylpolypyrrolidone–bromine complex: mild and efficient polymeric reagent for bromination of activated aromatic compounds. Chin Chem Lett 22(1):13–17. https://doi.org/10.1016/j.cclet.2010.06.002

    Article  CAS  Google Scholar 

  16. Mokhtary M, Lakouraj MM (2012) Polyvinylpyrrolidone-bromine complex: an efficient polymeric reagent for selective preparation of benzyl bromides in the presence of hexamethyldisilane. Bull Chem Soc Ethiop 26(2):305–309. https://doi.org/10.4314/bcse.v26i2.14

    Article  CAS  Google Scholar 

  17. Mokhtary M (2018) Recent advances in synthetic applications of polyvinyl pyrrolidone supported reagents and catalysts. Academic Journal of Polymer Science 2(1):555580. https://doi.org/10.19080/AJOP.2018.02.555580

    Article  Google Scholar 

  18. Hodge P (1997) Polymer-supported organic reactions: what takes place in the beads? Chem Soc Rev 26:417–424. https://doi.org/10.1039/CS9972600417

    Article  CAS  Google Scholar 

  19. Trost BM, Warner RW (1982) Macrocyclization via an isomerization reaction at high concentrations promoted by palladium templates. J Am Chem Soc 104(22):6112–6114. https://doi.org/10.1021/ja00386a045

    Article  CAS  Google Scholar 

  20. Trost BM, Keinan E (1978) Steric steering with supported palladium catalysts. J Am Chem Soc 100(24):7779–7781. https://doi.org/10.1021/ja00492a084

    Article  CAS  Google Scholar 

  21. Shuttleworth SJ, Allin SM, Wilson RD, Nasturica D (2000) Functionalised polymers in organic chemistry; part 2. Synthesis 8:1035–1074. https://doi.org/10.1055/s-2000-6310

    Article  Google Scholar 

  22. McNamara CA, Dixon MJ, Bradley M (2002) Recoverable catalysts and reagents using recyclable polystyrene-based supports. Chem Rev 102:3275–3300. https://doi.org/10.1021/cr0103571

    Article  CAS  PubMed  Google Scholar 

  23. Hajjami M, Ghorbani-Choghamarani A, Norouzi M (2012) An efficient and facile procedure for synthesis of acetates from alcohols catalyzed by poly(4-vinylpyridinium tribromide). Chin J Catal 33(9–10):1661–1664. https://doi.org/10.1016/s1872-2067(11)60441-5

    Article  CAS  Google Scholar 

  24. Ghorbani-Choghamarani A, Azadi G (2011) Polyvinylpolypyrrolidone-supported hydrogen peroxide (PVP-H2O2), silica sulfuric acid and catalytic amounts of ammonium bromide as green, mild and metal-free oxidizing media for the efficient oxidation of alcohols and sulphides. J Iran Chem Soc 8(4):1082–1090. https://doi.org/10.1007/bf03246566

    Article  CAS  Google Scholar 

  25. Ghorbani-choghamarani A, Pourbahar N (2012) Polyvinylpolypyrrolidoniume Tribromide as an efficient catalyst for the acetylation of alcohols and phenols. Chin J Catal 33(9–10):1470–1473. https://doi.org/10.1016/s1872-2067(11)60428-2

    Article  CAS  Google Scholar 

  26. Veerakumar P, Lu ZZ, Velayudham M, Lu KL, Rajagopal S (2010) Alumina supported nanoruthenium as efficient heterogeneous catalyst for the selective H2O2 oxidation ofaliphatic and aromatic sulfides to sulfoxides. Journal of Molecular catalysis A: Chemical 332:128–137. https://doi.org/10.1016/j.molcata.2010.09.008

    Article  CAS  Google Scholar 

  27. Akelah A (1988) The use of functionalised polymers as polymeric reagents in solid phase organic synthesis- a review. Reactive Polvmers, Ion Exchangers, Sorbents 8(3):273–284. https://doi.org/10.1016/0167-6989(88)90303-0

    Article  CAS  Google Scholar 

  28. Takemoto K, Inaki Y, Ottenbrite RM (1987) Functional monomers and polymers Dekker, N Y: 1–100

  29. Thomas JM (1999) Design, synthesis, and in situ characterization of new solid catalysts. Angew Chem Int Ed 38(24):3588–3628. https://doi.org/10.1002/(sici)1521-3773(19991216)38:24<3588::aid-anie3588>3.0.co;2-4

    Article  CAS  Google Scholar 

  30. De la Hoz A, Loupy A (2013) Microwaves in organic synthesis3rd edn. Wiley, Weinheim, Germany

    Google Scholar 

  31. Jaśkowska J, Drabczyk A, Kułaga D, Zaręba P, Majka Z (2018) Solvent-free microwave-assisted synthesis of aripiprazole. Current Chemistry Letters 7(3):81–86. https://doi.org/10.5267/j.ccl.2018.08.002

    Article  Google Scholar 

  32. Ramírez JR, Caballero R, Guerra J, Ruiz-Carretero A, Sánchez-Migallón A, de la Hoz A (2015) Solvent-free microwave-assisted synthesis of 2, 5-Dimethoxyphenylaminotriazines. ACS Sustain Chem Eng 3(12):3405–3411. https://doi.org/10.1021/acssuschemeng.5b0113

    Article  Google Scholar 

  33. Kamil F, Abid Hubeatir K, Shamel M, Al-Amiery AA (2015) Microwave-assisted solvent-free synthesis of new polyimine. Cogent Chemistry 1(1). https://doi.org/10.1080/23312009.2015.1075853

  34. Patel JP, Avalani JR, Raval DK (2013) Polymer supported sulphanilic acid: a highly efficient and recyclable green heterogeneous catalyst for the construction of 4,5-dihydropyrano[3,2-c]chromenes under solvent-free conditions. J Chem Sci 125(3):531–536. https://doi.org/10.1007/s12039-013-0408-8

    Article  CAS  Google Scholar 

  35. De la Hoz A, Díaz-Ortis A, Moreno A, Langa F (2000) Cycloadditions under microwave irradiation conditions: methods and applications. Eur J Org Chem 2000(22):3659–3673. https://doi.org/10.1002/1099-0690(200011)2000:22<3659::aid-ejoc3659>3.0.co;2-0

    Article  Google Scholar 

  36. Subodh G, Deepu V, Mohanan P, Sebastian MT (2009) Polystyrene/Sr2Ce2Ti5O15composites with low dielectric loss for microwave substrate applications. Polym Eng Sci 49(6):1218–1224. https://doi.org/10.1002/pen.21220

    Article  CAS  Google Scholar 

  37. O’Keefe S, Luscombe CK (2016) Microwave dielectric properties of polytetrafluoroethylene-polyacrylate composite films made via aerosol deposition. Polym Int 65(7):820–826. https://doi.org/10.1002/pi.5138

    Article  CAS  Google Scholar 

  38. Chen Y, Mao J, Zhu Y, Zhang K, Wu G, Wu J, Zhang H (2017) Structure and properties of microwave transparent crosslinked polystyrene prepared through 3D printing bulk polymerization. J Appl Polym Sci 134(30):44865. https://doi.org/10.1002/app.44865

    Article  CAS  Google Scholar 

  39. Sherrington DC, Hodge P (1980) Polymer supported reactions in organic synthesis, J. Wiley & Sons, New York

    Google Scholar 

  40. Arunan C, Pillai VNR (2003) 1,6-hexanediol diacrylate-crosslinked polystyrene: preparation, characterization, and application in peptide synthesis. Journal of Applied Polymer Science 87(8):1290–1296. https://doi.org/10.1002/app.11538

    Article  CAS  Google Scholar 

  41. Marvel CS, Porter PK (1941) Organic synthesis collection, Vol.I, 2nd edition, Wiley, New York,

  42. Sebastian SM (2013) Microwave assisted reactions using polyvinylpyrrolidone supported reagents. Mahatma Gandhi University, Kottayam, Kerala, India, Dissertation

    Google Scholar 

  43. Lorenz DH (1971) N-Vinylamide polymers. Encyclopedia of Polymer Science and Technology 14:239–251

    CAS  Google Scholar 

  44. Jose J, John M, Mathew B (2003) Effect of the nature of crosslinking agent on the catalase-like activity of polystyrene-bound glycine–metal complexes. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 40(8):863–879. https://doi.org/10.1081/MA-120022276

    Article  CAS  Google Scholar 

  45. Suhas DP, Jeong HM, Aminabhavi TM, Raghu AV (2013) Preparation and characterization of novel polyurethanes containing 4,4′-{oxy-1,4-diphenyl bis(nitromethylidine)}diphenol schiff base diol. Polym Eng Sci 54(1):24–32. https://doi.org/10.1002/pen.23532

    Article  CAS  Google Scholar 

  46. Raghu AV, Anita G, Barigaddi YM, Gadaginamath GS, Aminabhavi TM (2007) Synthesis and characterization of novel polyurethanes based on 2,6-bis(4-hydroxybenzylidene) cyclohexanone hard segments. J Appl Polym Sci 104(1):81–88. https://doi.org/10.1002/app.25518

    Article  CAS  Google Scholar 

  47. Zhao HC, Guo JL, Li JT, Gao LL, Bian CC (2010) Synthesis and thermal property of linear Chloromethylated polystyrene. Adv Mater Res 150-151:1504–1507. https://doi.org/10.4028/www.scientific.net/amr

    Article  Google Scholar 

  48. Donawade DS, Raghu AV, Gadaginamath GS (2007) Synthesis and antimicrobial activity of novel linearly fused 5-Substituted-7-acetyl-2,6-dimethyloxazolo[4,5-f]indoles. ChemInform 38(31). https://doi.org/10.1002/chin.200731099

  49. Donawade DS, Raghu AV, Gadaginamath GS (2006) Synthesis and antimicrobial activity of some new 1-Substituted-3-pyrrolyl Aminocarbonyl/Oxadiazolyl/Triazolyl/5-Methoxy-2-methylindoles and Benz[g]indoles. ChemInform 37(28) http://hdl.handle.net/123456789/6383

Download references

Acknowledgements

The financial assistance to Anjaly Mathew from University Grants Commission, Government of India under minor research project, is gratefully acknowledged. The authors would like to thank SAIF STIC, CUSAT, Kerala, India for characterization facilities.

Funding

This work was supported by the University Grants Commission Government of India, under the Minor Research Project. [No. 2265-MRP /15–16/KLCA029/UGC-SWRO dated 25th April 2016].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebey P Koshy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Divinylbenzene crosslinked polysterene supported bromoderivative of 2 –oxazolidone (DVB-PS-OX-Br) is an efficient, recyclable, microwave-safe and an environmentally stable reservoir of bromine

• DVB-PS-OX-Br is used for the bromination of alkenes, activated aromatic compounds and for the α-bromination of ketones under microwave irradiation

Electronic supplementary material

10965_2020_2251_MOESM1_ESM.docx

Figure S1 GC-MS spectra of bromostyrene Fig.S2 GC-MS spectra of α-Bromo cinnamaldehyde Fig.S3 GC-MS spectra of Styrene dibromide Fig.S4 GC-MS spectra of Dibromo cyclohexane Fig.S5 GC-MS spectra of 4-Bromo-N,N-dimethylaniline Fig.S6 GC-MS spectra of 4-Bromo-2,6-Dimethyl phenol Fig.S7 GC-MS spectra of 2,6-Dibromo-4-tert-butyl phenol Fig.S8 GC-MS spectra of α-Bromoacetanilide Fig. S9 1H NMR spectrum of β-Bromostyrene Fig. S10 1H NMR spectrum of Styrenedibromide (DOCX 733 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathew, A., Mathew, B. & Koshy, E.P. Polystyrene supported bromoderivative of 2-oxazolidone – an efficient reagent for microwave assisted bromination reactions. J Polym Res 27, 271 (2020). https://doi.org/10.1007/s10965-020-02251-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02251-w

Keywords

Navigation