Skip to main content
Log in

Modified starch with bis(2-hydroxyethyl) terephthalate: synthesis, characterization and elaboration of films

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Banana starch was modified with B bis(2-hydroxyethyl) terephthalate and its instrumental characterization allowed to propose a chemical structure. In the carbon 6 (C6) of the starch the modification reaction was carried out. The morphology of starch changes due to its chemical modification. The modified starch showed a lower crystallinity and thermal stability, compared to the native starch favoring its film formation. The electrical conductivity of the modified starch films was 2.7 times higher than that for the native starch film. The aqueous hydrolysis of the modified starch films was carried out obtaining a degradation of 77% in a determined time. Modified starch films present different mechanical properties compared to native starch film. These results have high application potential to be used in PET degradation products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ogunsona E, Ojogbo E, Mekonnen T (2018) Advanced material applications of starch and its derivatives. Eur Polym J 108:570–581

    CAS  Google Scholar 

  2. Bendoraitiene J, Lekniute KE, Rutkaite R (2018) Biodegradation of cross-linked and cationic starches. Int J Biol Macromol 119:345–351

    CAS  PubMed  Google Scholar 

  3. Tianzhi B, Zhaobin Q (2020) Synthesis, thermal and mechanical properties of fully biobased poly(butylene-co-propylene 2,5-furandicarboxylate) copolyesters with low contents of propylene 2,5-furandicarboxylate units. Polymer 186:122053

    Google Scholar 

  4. Essabti F, Guinault A, Roland S, Régnier G, Ettaqi S, Gervais M (2018) Preparation and characterization of poly(ethylene terephthalate) films coated by chitosan and vermiculite nanoclay. Carbohydr Polym 201:392–401

    CAS  PubMed  Google Scholar 

  5. Yin G, Yang X (2020) Biodegradable polymers: a cure for the planet, but a long way to go. J Polym Res 27:38

    CAS  Google Scholar 

  6. Vadim KK, Sergey EP, Nikolay AK (2018) Review of direct chemical and biochemical transformations of starch. Carbohydr Polym 181:460–476

    Google Scholar 

  7. Ayenampudi SB, Rangarajan JM, Ramanathan P (2019) Effect of single and dual-modifications on stability and structural characteristics of foxtail millet starch. Food Chem 271:457–465

    Google Scholar 

  8. Çelik M (2006) Preparation and characterization of starch-g-polymethacrylamide copolymers. J Polym Res 13:427–432

    Google Scholar 

  9. Bhupinder K, Fazilah A, Rajeev B, Alias AK (2012) Progress in starch modification in the last decade. Food Hydrocoll 26:398–404

    Google Scholar 

  10. Nonhlanhla M, Yahya EC, Pradeep K, Lisa CT, Mershen G, Sunaina I, Viness P (2017) A review of the chemical modification techniques of starch. Carbohydr Polym 157:1226–1236

    Google Scholar 

  11. Dai H, Chang PR, Peng F, Jiugao Y, Xiaofei M (2009) N-(2-Hydroxyethyl)formamide as a new plasticizer for thermoplastic starch. J Polym Res 16:529–535

    CAS  Google Scholar 

  12. Daisuke H, Yasutaka T, Kazuya Y, Jun-ichi K (2014) Hierarchically self-assembled nanofiber films from amylose-grafted carboxymethyl cellulose. Fibers 2:34–44

    Google Scholar 

  13. Muljana H, Picchioni F, Heeres H, Janssen L (2010) Green starch conversions: Studies on starch acetylation in densified CO2. Carbohydr Polym 82:653–662

    CAS  Google Scholar 

  14. Zhang S, Zhang Y, Huang HX, Yan BY, Zhang X, Tang Y (2010) Preparation and properties of starch oxalate half-ester with different degrees of substitution. J Polym Res 17:43–51

    Google Scholar 

  15. Ramírez-Hernández A, Mata-Mata JL, Aparicio-Saguilán A, González-García G, Hernández-Mendoza H, Gutiérrez-Fuentes A, Báez-García E (2016) Chemical modification of banana starch by the in situ polymerization of ε-caprolactone in one step. Starch/starke 69(5–6):1600197

    Google Scholar 

  16. Fares MM, El-faqeeh AS, Osma ME (2003) Graft Copolymerization onto Starch–I. Synthesis and Optimization of Starch Grafted with N-tert-Butylacrylamide Copolymer and its Hydrogels. J Polym Res 10:119–125

    CAS  Google Scholar 

  17. Chonthira SC, Schoenlechner R, Sekiguchi K, Berghofer E, Perry K (2014) Effect of extrusion cooking on the physicochemical properties, resistant starch, phenolic content and antioxidant capacities of green banana flour. Food Chem 143:33–39

    Google Scholar 

  18. Mohammadi SR, Khonakdar HA, Ehsani M, Jafari SH, Wagenknecht U, Kretzschmar B (2011) Investigation of thermal behavior and decomposition kinetic of PET/PEN blends and their clay containing nanocomposites. J Polym Res 18:1765–1775

    CAS  Google Scholar 

  19. Qiuhui J, Takuya I, Hyuji Y, Dilinazi D, Nattapon L, Shinya S, Fumitake T (2019) The effect of recycling bin design on PET bottle collection performance. Waste Manag 95(2019):32–45

  20. Ghanbari A, Heuzey MC, Carreau PJ, Ton-That MT (2013) A novel approach to control thermal degradation of PET/organoclay nanocomposites and improve clay exfoliation. Polymer 54:1361–1369

    CAS  Google Scholar 

  21. Sharma V, Shrivastava P, Agarwal DD (2015) Degradation of PET-bottles to monohydroxyethyl terephthalate (MHT) using ethylene glycol and hydrotalcite. J Polym Res 22:241

    Google Scholar 

  22. Espinoza-García K, Marcos-Fernández A, Navarro R, Ramírez-Hernández A, Baez-García E, Porras-Rangel G (2019) Polymerization of ε-caprolactone with degraded PET for its functionalization. J Polym Res 26:180

    Google Scholar 

  23. Shah TH, Bhatty JI, Gamlen GA, Dollimore D (1984) Aspects of the chemistry of poly(ethylene terephthalate): 5. Polymerization of bis(hydroxyethyl) terephthalate by various metallic catalysts. Polymer 25:1333–1336

    CAS  Google Scholar 

  24. Meng-Juan L, Yan-Hong H, An-Qi J, Tian-Shi Y, Ming-Qiao G (2014) Synthesis and characterization of azo dyestuff based on bis(2-hydroxyethyl) terephthalate derived from depolymerized waste poly(ethylene terephthalate) fibers. Chin Chem Lett 25:1550–1554

    Google Scholar 

  25. Güçlü G, Yalçınyuva T, Özgümüş S, Orbay M (2003) Simultaneous glycolysis and hydrolysis of polyethylene terephthalate and characterization of products by differential scanning calorimetry. Polymer 44:7609–7616

    Google Scholar 

  26. Paszun D, Spychaj T (1997) Chemical recycling of poly (ethylene terephthalate). Ind Eng Chem Res 36:1373–1383

    CAS  Google Scholar 

  27. Guoxi X, Maixi L, Chen S (2005) Study on depolymerization of waste polyethylene terephthalate into monomer of bis(2-hydroxyethyl terephthalate). Polym Degrad Stabil 87:117–120

    Google Scholar 

  28. Mejjatti AE, Harit T, Riahi A, Khiari R, Bouabdallah I, Malek F (2014) Chemical recycling of poly(ethylene terephthalate). Application to the synthesis of multiblock copolyesters. Express Polym Lett 8:544–553

    Google Scholar 

  29. Achanai B, Duangamol O, Pongsatorn S, Sarinee P, Vorrada L (2018) Synthesis of PET-PLA copolymer from recycle plastic bottle and study of its applications in the electrochromic devices with graphene conductive ink. Mater Today Proc 5:11060–11067

    Google Scholar 

  30. Tong SN, Chen DS, Chen CC, Chung LZ (1983) Unsaturated polyesters based on bis(2-hydroxyethyl)terephthalate. Polym 24:469–472

    CAS  Google Scholar 

  31. Wang Y, Zhang Y, Song H, Wang Y, Deng T, Hou X (2019) Zinc-catalyzed ester bond cleavage: Chemical degradation of polyethylene terephthalate. J Clean Prod 208:1469–1475

    CAS  Google Scholar 

  32. Viante MF, Zanela TMP, Stoski A, Muniz EC, Almeida CAP (2018) Magnetic microspheres composite from poly(ethylene terephthalate) (PET) waste: Synthesis and characterization. J Clean Prod 198:979–986

    CAS  Google Scholar 

  33. Espinoza García K, Navarro R, Ramírez-Hernández A, Marcos-Fernández A (2017) New routes to difunctional macroglycols using ethylene carbonate: Reaction with bis-(2-hydroxyethyl) terephthalate and degradation of poly(ethylene terephthalate). Polym Degrad Stabil 144:195–206

    Google Scholar 

  34. Emadian SM, Turgut TO, Burak D (2017) Biodegradation of bioplastics in natural environments. Waste Manag 59:526–536

    CAS  PubMed  Google Scholar 

  35. Ganesh KA, Anjana K, Hinduja M, Sujitha K, Dharani G (2020) Review on plastic wastes in marine environment – Biodegradation and biotechnological solutions. Mar Pollut Bull 150:110733

    Google Scholar 

  36. Aparicio-Saguilán A, Aguirre-Cruz A, Méndez-Montealvo G, Rodriguez-Ambriz SL, García-Suarez FL, Páramo-Calderón DE, Bello-Pérez LA (2014) The effect of the structure of native banana starch from two varieties on its acid hydrolysis. LWT- Food Sci Technol 58:381–386

    Google Scholar 

  37. Flores-Gorosquieta E, García-Suárez F, Flores-Hiucochea E, Núñez-Santiago M, Gonzáles-Soto R, Bello-Pérez L (2004) Performance starch extraction process of banana fruit (Musa paradisiaca) Pilot plant studies. Acta Cient Venez 55:86–90

    Google Scholar 

  38. Ramírez-Hernández A, Mata-Mata JL, Aparicio-Saguilán A, González-García G, Hernández-Mendoza H, Gutiérrez-Fuentes A, Báez-García E (2016) The effect of ethylene glycol on starch-g-PCL graft copolymer synthesis. Starch/Starke 68:1148–1157

    Google Scholar 

  39. Ramírez-Hernández A, Aparicio‐Saguilán A, Mata‐Mata JL, González‐García G, Hernández‐Mendoza H, Báez‐García E, Conde‐Acevedo J (2017) Clusters of starch‐g‐PCL and their effect on the physicochemical properties of films. Starch-Stärke 70:1700135

    Google Scholar 

  40. Ramírez-Hernández A, Aparicio-Saguilán A, Reynoso-Meza G, Carrillo-Ahumada J (2017) Multi-objective optimization of process conditions in the manufacturing of banana (Musa paradisiaca L.) starch/natural rubber films. Carbohydr Polym 157:1125–1133

    PubMed  Google Scholar 

  41. Núñez-Santiago MC, Bello-Pérez LA, Tecante A (2004) Swelling-solubility characteristics, granule size distribution and rheological behavior of banana (Musa paradisiaca) starch. Carbohydr Polym 6:65–75

    Google Scholar 

  42. Espinosa SV, Jane J, Bello PL (2009) Physicochemical characteristics of starches from unripe fruits of mango and banana. Starch/Stärke 61:291–299

    Google Scholar 

  43. Šoltýs A, Hronský V, Šmídová N, Olčák D, Ivanič F, Chodák I (2019) Solid-state 1H and 13C NMR of corn starch plasticized with glycerol and urea. Eur Polym J 117:19–27

    Google Scholar 

  44. Wang Y, Min MZ, Mujumdar A (2012) Influence of green banana flour substitution for cassava starch on the nutrition, color, texture and sensory quality in two types of snacks. LWT - Food Sci Technol 4:175–182

    Google Scholar 

  45. Bello-Pérez LA, Agama-Acevedo E, Sáyago-Ayerdi SG, Moreno-Damián E, Figueroa JD (2000) Some structural, physicochemical and functional studies of banana starches isolated from two varieties growing in Guerrero, México. Starch 52:68–73

    Google Scholar 

  46. Faisant N, Gallant DJ, Bouchet B, Champ M (1995) Banana starch breakdown in the human small intestine studied by electron microscopy. Eur J Clin Nutr 49:98–104

    CAS  PubMed  Google Scholar 

  47. Pelissari F, Andrade-Mahecha MM, Amaral SP, Menegalli FC (2013) Comparative study on the properties of flour and starch films of plantain bananas (Musa paradisiaca). Food Hydrocoll 30:681–690

    CAS  Google Scholar 

  48. Hizukuri S, Kaneko T, Takeda Y (1983) Measurement of the chain length of amylopectin and its relevance to the origin of crystalline polymorphism of starch granules. Biochim Biophys Acta 760:188–191

    CAS  Google Scholar 

  49. Merino D, Mansilla AY, Gutiérrez TJ, Casalongué CA, Alvarez VA (2018) Chitosan coated-phosphorylated starch films: Water interaction, transparency and antibacterial properties. React Funct Polym 131:445–453

    CAS  Google Scholar 

  50. Correa AC, Carmona VB, Simão JA, Capparelli-Mattoso LH, Marconcini JM (2017) Biodegradable Blends of Urea Plasticized Thermoplastic Starch (UTPS) and poly(ε-caprolactone) (PCL): Morphological, Rheological, Thermal and Mechanical Properties. Carbohydr Polym 167:177–184

    CAS  PubMed  Google Scholar 

  51. Huang M, Yu J, Ma X (2005) Ethanolamine as a novel plasticizer for thermoplastic starch. Polym Degrad Stabil 90:501–507

    CAS  Google Scholar 

  52. Montoya M, Arrieta-Álvaro A, Palencia MS (2018) Synthesis and electrochemical characterization of polypyrrole/sodium p-toluenesulfonate biofilms supported on cassava starch conductive polymers for applications in electrical charge accumulators. Adv J Food Sci Technol 16:142–145

    CAS  Google Scholar 

  53. Lavielle L, Nakajima K, Schultz J (1992) Influence of an electric field on polar-group orientation and adhesion at poly(ethylene terephthalate) surfaces. J Appl Polym Sci 46:1045–1050

    CAS  Google Scholar 

  54. Gutiérrez TJ, Tapia MS, Pérez E, Famá L (2015) Structural and mechanical properties of edible films made from native and modified cush-cush yam and cassava starch. Food Hydrocoll 45:211–217

    Google Scholar 

Download references

Acknowledgements

We are grateful to Concejo Nacional de Ciencia y Tecnología (Conacyt), Instituto de Ciencia y Tecnología de Polímeros (ICTP), Universidad del Papaloapan campus Tuxtepec, Martínez Olguiín Aldo de Jesús, Martha Ferrer Guadalupe and Martha Rocio Valencia Estacio for their assistance on this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurelio Ramírez-Hernández.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.80 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Centeno, S., Marcos-Fernández, A., Aparicio-Saguilán, A. et al. Modified starch with bis(2-hydroxyethyl) terephthalate: synthesis, characterization and elaboration of films. J Polym Res 27, 270 (2020). https://doi.org/10.1007/s10965-020-02249-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02249-4

Keywords

Navigation