Skip to main content
Log in

Double crosslinking hydrogel with tunable properties for potential biomedical application

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Weak performance of hydrogel fabricated by a sole component limits their applications. In this study, we proposed a facile preparation of hydrogels by using three natural polymers, carboxymethyl chitosan, alginate and agarose. The fabricated carboxymethyl chitosan/sodium alginate/agarose hydrogels were further treated by divalent calcium ions to form a double crosslinked network inside. These double crosslinked hydrogels showed tunable mechanical property and the compressive strength ranged from 176 Pa to 685 Pa by varying the crosslinking degree. They also exhibited excellent swelling behavior (more than 1500%), good degradability and good biocompatibility, indicating their potential for application in wound healing, drug delivery and bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Joshi N, Yan J, Levy S, Bhagchandani S, Slaughter KV, Sherman NE, Amirault J, Wang YF, Riegel L, He XY, Rui TS, Valic M, Vemula PK, Miranda OR, Levy O, Gravallese EM, Aliprantis AO, Ermann J, Karp JM (2018) Towards an arthritis flare-responsive drug delivery system. Nat Commun 9(1):1275

  2. Vishalakshi B (2017) Silver nanoparticles embedded gum ghatti-graft-poly(N,N-dimethylacrylamide) biodegradable hydrogel: evaluation as matrix for controlled release of 2,4-dichlorophenoxyacetic acid. J Polym Res 24(10):155

    Article  Google Scholar 

  3. Zhao X, Wu H, Guo BL, Dong RN, Qiu YS, Ma PX (2017) Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 122:34–47

    Article  CAS  Google Scholar 

  4. Vedadghavami A, Minooei F, Mohammadi MH, Khetani S, Rezaei KA, Mashayekhan S, Sanati-Nezhad A (2017) Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater 62:42–63

    Article  CAS  Google Scholar 

  5. Yuk H, Lin S, Ma C, Takaffoli M, Fang NX, Zhao X (2017) Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat Commun 8:14230

    Article  CAS  Google Scholar 

  6. Lei Z, Wang Q, Sun S, Zhu W, Wu P (2017) A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv Mater 29(22):1700321

  7. Lin S, Yuk H, Zhang T, Parada GA, Koo H, Yu C, Zhao X (2016) Stretchable Hydrogel Electronics and Devices. Adv Mater 28(22):4497–4505

    Article  CAS  Google Scholar 

  8. Zhang YS, Khademhosseini A (2017) Advances in engineering hydrogels. Science 356(6337)

  9. An H, Chang LM, Shen JF, Zhao SH, Zhao MY, Wang XM, Qin JL (2019) Light emitting self-healable hydrogel with bio-degradability prepared form pectin and Tetraphenylethylene bearing polymer. J Polym Res 26(2)

  10. Chung YC, Su YP, Chen CC, Jia G, Wang HI, Wu JCG, Lin JG (2004) Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol Sin 25(7):932–936

    CAS  PubMed  Google Scholar 

  11. Li JH, Wu YG, Zhao LQ (2016) Antibacterial activity and mechanism of chitosan with ultra high molecular weight. Carbohydr Polym 148:200–205

    Article  CAS  Google Scholar 

  12. Man Z, Hu X, Liu Z, Huang H, Meng Q, Zhang X, Dai L, Zhang J, Fu X, Duan X (2016) Transplantation of allogenic chondrocytes with chitosan hydrogel-demineralized bone matrix hybrid scaffold to repair rabbit cartilage injury. Biomaterials 108:157–167

    Article  CAS  Google Scholar 

  13. Chao PHG, Yodmuang S, Wang XQ, Sun L, Kaplan DL, Vunjak-Novakovic G (2010) Silk hydrogel for cartilage tissue engineering. J Biomed Mater Res B 95b(1):84–90

    Article  CAS  Google Scholar 

  14. Yodmuang S, McNamara SL, Nover AB, Mandal BB, Aganwal M, Kelly TAN, Chao PHG, Hung C, Kaplan DL, Vunjak-Novakovic G (2015) Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomater 11:27–36

    Article  CAS  Google Scholar 

  15. Singh YP, Bhardwaj N, Mandal BB (2016) Potential of Agarose/Silk Fibroin Blended Hydrogel for in Vitro Cartilage Tissue Engineering. ACS Appl Mater Interfaces 8(33):21236–21249

    Article  CAS  Google Scholar 

  16. Bhat S, Tripathi A, Kumar A (2011) Supermacroprous chitosan-agarose-gelatin cryogels: In vitro characterization and in vivo assessment for cartilage tissue engineering. J R Soc Interface 8(57):540–554

    Article  CAS  Google Scholar 

  17. Eiselt P, Yeh J, Latvala RK, Shea LD, Mooney DJ (2000) Porous carriers for biomedical applications based on alginate hydrogels. Biomaterials 21(19):1921–1927

    Article  CAS  Google Scholar 

  18. Garcia-Astrain C, Averous L (2018) Synthesis and evaluation of functional alginate hydrogels based on click chemistry for drug delivery applications. Carbohydr Polym 190:271–280

    Article  CAS  Google Scholar 

  19. Osmokrovic A, Jancic I, Vunduk J, Petrovic P, Milenkovic M, Obradovic B (2018) Achieving high antimicrobial activity: composite alginate hydrogel beads releasing activated charcoal with an immobilized active agent. Carbohydr Polym 196:279–288

    Article  CAS  Google Scholar 

  20. Kumar A, Wang X, Nune KC, Misra R (2017) Biodegradable hydrogel-based biomaterials with high absorbent properties for non-adherent wound dressing. Int Wound J 14(6):1076–1087

    Article  Google Scholar 

  21. Campbell KT, Stilhano RS, Silva EA (2018) Enzymatically degradable alginate hydrogel systems to deliver endothelial progenitor cells for potential revasculature applications. Biomaterials 179:109–121

    Article  CAS  Google Scholar 

  22. Huang H, Choi JK, Rao W, Zhao S, Agarwal P, Zhao G, He X (2015) Alginate Hydrogel Microencapsulation Inhibits Devitrification and Enables Large-Volume Low-CPA Cell Vitrification. Adv Funct Mater 25(44):6939–6850

    Article  CAS  Google Scholar 

  23. Liu C, Mejia DL, Chiang B, Luker KE, Luker GD (2018) Hybrid Collagen Alginate Hydrogel as a Platform for 3D Tumor Spheroid Invasion. Acta Biomater 75:213–225

    Article  CAS  Google Scholar 

  24. Silva R, Singh R, Sarker B, Papageorgiou DG, Juhasz JA, Roether JA, Cicha I, Kaschta J, Schubert DW, Chrissafis K, Detsch R, Boccaccini AR (2014) Hybrid hydrogels based on keratin and alginate for tissue engineering. J Mater Chem B 2(33):5441–5451

    Article  CAS  Google Scholar 

  25. Han Y, Li YH, Zeng QY, Li HY, Peng JL, Xu YH, Chang J (2017) Injectable bioactive akermanite/alginate composite hydrogels for in situ skin tissue engineering. J Mater Chem B 5(18):3315–3326

    Article  CAS  Google Scholar 

  26. Chen SH, Li Z, Liu ZL, Cheng L, Tong XL, Dai FY (2019) Antimicrobial hydrogels with controllable mechanical properties for biomedical application. J Mater Res 34(11):1911–1921

    Article  CAS  Google Scholar 

  27. Forget A, Christensen J, Ludeke S, Kohler E, Tobias S, Matloubi M, Thomann R, Shastri VP (2013) Polysaccharide hydrogels with tunable stiffness and provasculogenic properties via alpha-helix to beta-sheet switch in secondary structure. Proc Natl Acad Sci U S A 110(32):12887–12892

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is funded by Chongqing Research Program of Basic Research and Frontier Technology (No.cstc2017jcyjAX0087), Fundamental Research Funds for the Central Universities (NO. XDJK2018B015), and the Innovation Program for Chongqing’s Overseas Returnees (cx2019090). We gratefully acknowledge financial support from the project funded by China Postdoctoral Science Foundation (No.2017 M612890), the special foundation of Chongqing Postdoctoral Science Project (No.Xm2017072) and State Key Laboratory of Silkworm Genome Biology (No.sklsgb161718-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangyin Dai.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Chen, L., Xu, M. et al. Double crosslinking hydrogel with tunable properties for potential biomedical application. J Polym Res 27, 262 (2020). https://doi.org/10.1007/s10965-020-02242-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02242-x

Keywords

Navigation