Skip to main content
Log in

Flexible piezoelectric PVDF/NDs nanocomposite films: improved electroactive properties at low concentration of nanofiller and numerical simulation using finite element method

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In the present work, flexible poly (vinylidene fluoride)/Diamond nanoparticles nanocomposite films with improved electroactive properties at low filler concentration were developed. The combination of nanofiller doping and mechanical stretching was employed to obtain the films with significantly improved electroactive phase at low nanodiamond (ND) concentration, making them the interesting materials for several applications in the electronic devices. The nanocomposite films with different nanofiller concentration were prepared and then stretched under different stretch ratios. The polar phase content of all films was calculated and compared. It was found that the polar phase fraction of the films was significantly enhanced by increasing the nanofiller concentration and the stretch ratio. Moreover, a finite element model was constructed to determine the true value of the strain during the tensile process and to calibrate the stretch ratio. Development of such nanocomposite films with improved piezoelectric properties at low nanofiller concentration can extend their applications for practical usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Maity K, Mandal D (2018) All-organic high-performance piezoelectric nanogenerator with multilayer assembled electrospun nanofiber mats for self-powered multifunctional sensors. ACS Appl Mater Interfaces 10:18257–18269

    Article  CAS  Google Scholar 

  2. Yan, J., Liu, M., Jeong, Y.G., Kang, W., Li, L., Zhao, Y., Deng, N., Cheng, B., and Yang, G. 2018. Performance enhancements in poly (vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvesting. Nano energy

  3. Trung TQ, Lee NE (2016) Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv Mater 28:4338–4372

    Article  CAS  Google Scholar 

  4. Huang, Y., Fan, X., Chen, S.C., and Zhao, N. 2019. Emerging Technologies of Flexible Pressure Sensors: materials, modeling, devices, and manufacturing. Advanced functional materials, Vol. 29: 1808509

  5. Fuh Y-K, Chen P-C, Huang Z-M, Ho H-C (2015) Self-powered sensing elements based on direct-write, highly flexible piezoelectric polymeric nano/microfibers. Nano Energy 11:671–677

    Article  CAS  Google Scholar 

  6. Shepelin NA, Glushenkov AM, Lussini VC, Fox PJ, Dicinoski GW, Shapter JG, Ellis AV (2019) New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting. Energy Environ Sci 12:1143–1176

    Article  CAS  Google Scholar 

  7. Martins P, Lopes A, Lanceros-Mendez S (2014) Electroactive phases of poly (vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39:683–706

    Article  CAS  Google Scholar 

  8. Gaur AM, Rana DS (2019) In situ measurement of dielectric permittivity and electrical conductivity of CoCl2/BaCl2 doped PVDF composite at elevated temperature. J Inorg Organomet Polym Mater 29:1637–1644

    Article  CAS  Google Scholar 

  9. Martins P, Nunes JS, Hungerford G, Miranda D, Ferreira A, Sencadas V, Lanceros-Méndez S (2009) Local variation of the dielectric properties of poly (vinylidene fluoride) during the α-to β-phase transformation. Phys Lett A 373:177–180

    Article  CAS  Google Scholar 

  10. Li L, Zhang M, Rong M, Ruan W (2014) Studies on the transformation process of PVDF from α to β phase by stretching. RSC Adv 4:3938–3943

    Article  CAS  Google Scholar 

  11. Mahadeva, S.K., Berring, J., Walus, K., and Stoeber, B. 2013. Effect of poling time and grid voltage on phase transition and piezoelectricity of poly (vinyledene fluoride) thin films using corona poling. Journal of physics D: applied physics, Vol. 46: 285305

  12. Andrew J, Clarke D (2008) Effect of electrospinning on the ferroelectric phase content of polyvinylidene difluoride fibers. Langmuir 24:670–672

    Article  CAS  Google Scholar 

  13. Pan C-T, Yen C-K, Wang S-Y, Lai Y-C, Lin L, Huang J, Kuo S-W (2015) Near-field electrospinning enhances the energy harvesting of hollow PVDF piezoelectric fibers. RSC Adv 5:85073–85081

    Article  CAS  Google Scholar 

  14. Pan C-T, Yen C-K, Wu H-C, Lin L, Lu Y-S, Huang JC-C, Kuo S-W (2015) Significant piezoelectric and energy harvesting enhancement of poly (vinylidene fluoride)/polypeptide fiber composites prepared through near-field electrospinning. J Mater Chem A 3:6835–6843

    Article  CAS  Google Scholar 

  15. Gebrekrstos A, Madras G, Bose S (2019) Journey of Electroactive β-polymorph of poly (vinylidenefluoride) from crystal growth to design to applications. Cryst Growth Des 19:5441–5456

    Article  CAS  Google Scholar 

  16. Salimi A, Yousefi AA (2003) Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym Test 22:699–704

    Article  CAS  Google Scholar 

  17. Wang A, Chen C, Liao L, Qian J, Yuan F-G, Zhang N (2020) Enhanced β-phase in direct ink writing PVDF thin films by intercalation of Graphene. J Inorg Organomet Polym Mater 30:1497–1502

    Article  CAS  Google Scholar 

  18. Alluri NR, Saravanakumar B, Kim S-J (2015) Flexible, hybrid piezoelectric film (BaTi (1–x) Zr x O3)/PVDF Nanogenerator as a self-powered fluid velocity sensor. ACS Appl Mater Interfaces 7:9831–9840

    Article  CAS  Google Scholar 

  19. Jana S, Garain S, Ghosh SK, Sen S, Mandal D (2016) The preparation of γ-crystalline non-electrically poled photoluminescant ZnO–PVDF nanocomposite film for wearable nanogenerators. Nanotechnology 27:445403

    Article  Google Scholar 

  20. Jaleh B, Fakhri P, Noroozi M, Muensit N (2012) Influence of copper nanoparticles concentration on the properties of poly (vinylidene fluoride)/cu nanoparticles nanocomposite films. J Inorg Organomet Polym Mater 22:878–885

    Article  CAS  Google Scholar 

  21. Sun L, Li B, Zhang Z, Zhong W (2010) Achieving very high fraction of β-crystal PVDF and PVDF/CNF composites and their effect on AC conductivity and microstructure through a stretching process. Eur Polym J 46:2112–2119

    Article  CAS  Google Scholar 

  22. Bao S, Liang G, Tjong SC (2011) Effect of mechanical stretching on electrical conductivity and positive temperature coefficient characteristics of poly (vinylidene fluoride)/carbon nanofiber composites prepared by non-solvent precipitation. Carbon 49:1758–1768

    Article  CAS  Google Scholar 

  23. Tang C-W, Li B, Sun L, Lively B, Zhong W-H (2012) The effects of nanofillers, stretching and recrystallization on microstructure, phase transformation and dielectric properties in PVDF nanocomposites. Eur Polym J 48:1062–1072

    Article  CAS  Google Scholar 

  24. Wu L, Yuan W, Hu N, Wang Z, Chen C, Qiu J, Ying J, Li Y (2014) Improved piezoelectricity of PVDF-HFP/carbon black composite films. J Phys D Appl Phys 47:135302

    Article  Google Scholar 

  25. Jiang, Z., Zheng, G., Zhan, K., Han, Z., and Yang, J. 2015. Formation of piezoelectric β-phase crystallites in poly (vinylidene fluoride)-graphene oxide nanocomposites under uniaxial tensions. Journal of physics D: applied physics, Vol. 48: 245303

  26. Jia N, Xing Q, Liu X, Sun J, Xia G, Huang W, Song R (2015) Enhanced electroactive and mechanical properties of poly (vinylidene fluoride) by controlling crystallization and interfacial interactions with low loading polydopamine coated BaTiO3. J Colloid Interface Sci 453:169–176

    Article  CAS  Google Scholar 

  27. He F-A, Lin K, Shi D-L, Wu H-J, Huang H-K, Chen J-J, Chen F, Lam K-H (2016) Preparation of organosilicate/PVDF composites with enhanced piezoelectricity and pyroelectricity by stretching. Compos Sci Technol 137:138–147

    Article  CAS  Google Scholar 

  28. Jahan, N., Mighri, F., Rodrigue, D., and Ajji, A. 2017. Enhanced electroactive β phase in three phase PVDF/CaCO3/nanoclay composites: effect of micro-CaCO3 and uniaxial stretching. Journal of Applied Polymer Science, 134

  29. Gaur A, Kumar C, Shukla R, Maiti P (2017) Induced piezoelectricity in poly (vinylidene fluoride) hybrid as efficient energy harvester. ChemistrySelect 2:8278–8287

    Article  CAS  Google Scholar 

  30. Wu L, Jing M, Liu Y, Ning H, Liu X, Liu S, Lin L, Hu N, Liu L (2019) Power generation by PVDF-TrFE/graphene nanocomposite films. Compos Part B 164:703–709

    Article  CAS  Google Scholar 

  31. Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7:11

    Article  CAS  Google Scholar 

  32. Schrand AM, Hens SAC, Shenderova OA (2009) Nanodiamond particles: properties and perspectives for bioapplications. Critical Reviews in Solid State and Materials Sciences 34:18–74

    Article  CAS  Google Scholar 

  33. Nunes-Pereira J, Silva A, Ribeiro C, Carabineiro S, Buijnsters J, Lanceros-Méndez S (2017) Nanodiamonds/poly (vinylidene fluoride) composites for tissue engineering applications. Compos Part B 111:37–44

    Article  CAS  Google Scholar 

  34. Jaleh, B., Sodagar, S., Momeni, A., and Jabbari, A. 2016. Nanodiamond particles/PVDF nanocomposite flexible films: thermal, mechanical and physical properties. Materials research express, Vol. 3: 085028

  35. Majzoobi GH, Kashfi M, Bonora N, Iannitti G, Ruggiero A, Khademi E (2018) Damage characterization of aluminum 2024 thin sheet for different stress triaxialities. Archives of Civil and Mechanical Engineering 18:702–712

    Article  Google Scholar 

  36. Kashfi M, Majzoobi GH, Bonora N, Iannitti G, Ruggiero A, Khademi E (2019) A new overall nonlinear damage model for fiber metal laminates based on continuum damage mechanics. Eng Fract Mech 206:21–33

    Article  Google Scholar 

  37. Majzoobi GH, Kashfi M, Bonora N, Iannitti G, Ruggiero A, Khademi E (2017) A new constitutive bulk material model to predict the uniaxial tensile nonlinear behavior of fiber metal laminates. The Journal of Strain Analysis for Engineering Design 53:26–35

    Article  Google Scholar 

  38. Jaleh, B. and Fakhri, P., Chapter 5 - Infrared and Fourier transform infrared spectroscopy for nanofillers and their nanocomposites, in Spectroscopy of Polymer Nanocomposites, S. Thomas, D. Rouxel, and D. Ponnamma, Editors. 2016, William Andrew Publishing. p. 112–129

  39. Dhatarwal P, Sengwa RJ (2019) Impact of PVDF/PEO blend composition on the β-phase crystallization and dielectric properties of silica nanoparticles incorporated polymer nanocomposites. J Polym Res 26:196

    Article  Google Scholar 

  40. Gregorio J, Rinaldo, Cestari M (1994) Effect of crystallization temperature on the crystalline phase content and morphology of poly (vinylidene fluoride). J Polym Sci B Polym Phys 32:859–870

    Article  CAS  Google Scholar 

  41. Fakhri P, Mahmood H, Jaleh B, Pegoretti A (2016) Improved electroactive phase content and dielectric properties of flexible PVDF nanocomposite films filled with au-and cu-doped graphene oxide hybrid nanofiller. Synth Met 220:653–660

    Article  CAS  Google Scholar 

  42. Dutta B, Bose N, Kar E, Das S, Mukherjee S (2017) Smart, lightweight, flexible NiO/poly(vinylidene flouride) nanocomposites film with significantly enhanced dielectric, piezoelectric and EMI shielding properties. J Polym Res 24:220

    Article  Google Scholar 

  43. Jaleh B, Jabbari A (2014) Evaluation of reduced graphene oxide/ZnO effect on properties of PVDF nanocomposite films. Appl Surf Sci 320:339–347

    Article  CAS  Google Scholar 

  44. Fakhri P, Amini B, Bagherzadeh R, Kashfi M, Latifi M, Yavari N, Kani SA, Kong L (2019) Flexible hybrid structure piezoelectric nanogenerator based on ZnO nanorod/PVDF nanofibers with improved output. RSC Adv 9:10117–10123

    Article  CAS  Google Scholar 

  45. Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, Deshmukh RR, Trimukhe AM, Pasha SKK, Polu AR, AlMaadeed MA-A, Chidambaram K (2017) Solution-processed white graphene-reinforced ferroelectric polymer nanocomposites with improved thermal conductivity and dielectric properties for electronic encapsulation. J Polym Res 24:27

    Article  Google Scholar 

  46. Han J, Li D, Zhao C, Wang X, Li J, Wu X (2019) Highly sensitive impact sensor based on PVDF-TrFE/Nano-ZnO composite thin film. Sensors 19:830

    Article  Google Scholar 

  47. Karan SK, Mandal D, Khatua BB (2015) Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester. Nanoscale 7:10655–10666

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Iranian Nano Council and Bu-Ali Sina University for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parisa Fakhri.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sodagar, S., Jaleh, B., Fakhri, P. et al. Flexible piezoelectric PVDF/NDs nanocomposite films: improved electroactive properties at low concentration of nanofiller and numerical simulation using finite element method. J Polym Res 27, 203 (2020). https://doi.org/10.1007/s10965-020-02184-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02184-4

Keywords

Navigation