Skip to main content

Advertisement

Log in

rGO / MnO2 / Polyterthiophene ternary composite: pore size control, electrochemical supercapacitor behavior and equivalent circuit model analysis

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this work, a new electrode active materials including reduced graphene oxide (rGO), Manganese dioxide (MnO2) / polyterthiophene (PTTh) has been synthesized as a nanocomposite using in-situ polymerization method, microwave-assisted method for obtaining reduced graphene oxide and chemical synthesis of metal-oxide for supercapacitor devices. A ternary nanocomposites of rGO/MnO2/PTTh were characterized by the analysis of Fourier transform infrared-attenuated transmission reflectance (FTIR-ATR), Raman spectroscopy, scanning electron microscopy-energy dispersion X-ray analysis (SEM-EDX), transmission electron microscopy (TEM), thermal-gravimetric analysis (TGA-DTA), Brunauer-Emmett Teller (BET) pore analysis, Ultraviolet-visible (UV-vis) spectrophotometer, X-ray diffraction (XRD) analysis, electrochemical impedance spectroscopy (EIS), galvanostatic charge/discharge (GCD), and cyclic voltammetry (CV). The highest specific capacitance (Csp) was obtained as Csp = 908.86 F/g for rGO/MnO2/PTTh nanocomposite at 1 mV/s for [MnO2]o/[TTh]o = 1/3. Moreover, equivalent electrical circuit model of LR(QR) was chosen to interpret EIS analysis of supercapacitor device. rGO/MnO2/PTTh nanocomposite has both electrochemical double-layer capacitance and pseudocapacitance due to the fast and reversible redox processes related to the π-conjugated polymer chains.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Salunkhe RR, Lee Y, Chang K, Li J, Simon P, Tang J, Torad NL, Hu C, Yamauchi Y (2014) Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications. Chem Eur J 20:13838–13852

    CAS  PubMed  Google Scholar 

  2. Dubal DP, Ayyad O, Ruiz V, Gomez-Romero P (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 44:1777–1790

    CAS  PubMed  Google Scholar 

  3. Chen J, Jia C, Wan Z (2014) Novel hybrid nanocomposite based on poly(3,4-ethylenedioxythiophene) / multiwalled carbon nanotubes / graphene as electrode material for supercapacitor. Synth Met 189:69–76

    CAS  Google Scholar 

  4. Libich J, Maca J, Vondrak J, Cech O, Sedlarikova M (2018) Supercapacitors: properties and applications. J Energ Storage 17:224–227

    Google Scholar 

  5. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    CAS  PubMed  Google Scholar 

  6. Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanostructured carbon-metal oxide composite electrodes for supercapacitor; a review. Nanoscale 5:72–88

    CAS  PubMed  Google Scholar 

  7. Li T, Zhu W, Shen R, Wang HY, Chen W, Hao SJ, Li YX, Gu ZG, Li ZJ (2018) Three-dimensional conductive porous organic polymers based on tetrahedral polythiophene for high-performance supercapacitors. New J Chem 42:6247–6255

    CAS  Google Scholar 

  8. Hasniou L, Nessark B, Madani A, Lmimouni K (2017) Electrosynthesis and analysis of the electrochemical properties of a composite material: polyterthiophene plus titanium oxide. E-polymers. 17:481–489

    CAS  Google Scholar 

  9. Xia H, Feng J, Wang H, Lai MO, Lu L (2010) MnO2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors. J Power Sources 195:4410–4413

    CAS  Google Scholar 

  10. Yan D, Guo Z, Zhu G, Yu Z, Xu H, Yu A (2012) MnO2 film with three-dimensional structure prepared by hydrothermal process for supercapacitor. J Power Sources 199:409–412

    CAS  Google Scholar 

  11. Szatkowski T, Kopczynski K, Motylenko M, Borrmann H, Mania B, Gras M, Lota G, Bazhenov W, Rafaja D, Roth F, Weise J, Langer E, Wysokowski M, Zolwowska-Aksamitowska S, Petrenko I, Molodtsov SL, Hubalkova T, Aneziris CG, Joseph Y, Stelling AL, Ehrlich H, Jesionowski T (2018) Extreme biomimetics: a carbonized 3D spongin scaffold as a novel support for nano-structured manganese oxide (IV) and its electrochemical applications. Nano Res 11:4199–4214

    CAS  Google Scholar 

  12. Kosevic M, Stopic S, Cvetkovic V, Schroeder M, Stevanovic J, Panic V, Friedrich B (2019) Mixed RuO2/TiO2 uniform microspheres synthesized by low-temperature ultrasonic spray pyrolysis and their advanced electrochemical performances. Appl Surf Sci 464:1–9

    CAS  Google Scholar 

  13. Song C, Guo BB, Sun XF, Wang SG, Li YT (2019) Enrichment and degradation of tetracycline using three-dimensional graphene/MnO2 composites. Chem Eng J 358:1139–1146

    CAS  Google Scholar 

  14. Liang BL, Li KX, Liu Y, Kang XW (2019) Nitrogen and phosphorus dual-doped carbon derived from chitosan: An excellent cathode catalyst in microbial fuel cell. Chem Eng J 358:1002–1011

    CAS  Google Scholar 

  15. Saha S, Samanta P, Murmu NC, Kuila T (2018) A review on the heterostructure nanomaterials for supercapacitor application. J Energy Storage 17:181–202

    Google Scholar 

  16. Brousse T, Toupin M, Dugas R, Athovel L, Crosnier O, Belanger D (2006) Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J Electrochem Soc 153:A21171–AA2180

    Google Scholar 

  17. Ghodbane O, Pascal JL, Favier F (2009) Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl Mater Inter 1:1130–1139

    CAS  Google Scholar 

  18. Zhu T, Zheng SJ, Chen YG, Luo J, Guo HB, Chen YE (2014) Improvement of hydrothermally synthesized MnO2 electrodes on Ni foams via facile annealing for supercapacitor applications. J Mater Sci 49:6118–6126

    CAS  Google Scholar 

  19. Liu Z, Li Z, Li D, Yin X, Liu Z (2016) Use of manganese dioxide as oxidant in polymerization of aniline on carbon black for supercapacitor performances. High Performence Polymers 28:1105–1113

    CAS  Google Scholar 

  20. Su DQ, Pan LJ, Fu X, Ma H (2015) Facile synthesis of CNC-MnO2 hybrid as a supercapacitor electrode. Appl Surf Sci 324:349–354

    CAS  Google Scholar 

  21. Zhang J, Zhang X, Liu Z, Zheng J, Zuo Y, Xue C, Li C, Cheng B, Wang Q (2018) MnO2 nanoflowers and reduced graphene oxide 3D composite for ultrahigh-energy density asymmetric supercapacitors. Energy Technol 6:737–743

    CAS  Google Scholar 

  22. Zhu SM, Zhou HA, Hibino M, Honma I, Ichihara M (2005) Synthesis of MnO2 nanoparticles confined in ordered mesoporous carbon using a sonochemical method. Adv Funct Mater 15:381–386

    CAS  Google Scholar 

  23. Fang L, Xie YP, Wang YY, Zhang ZW, Liu PF, Cheng NA, Liu JF, Tu YC, Zhao HB, Zhang JJ (2019) Facile synthesis of hierarchical porous carbon nanorods for supercapacitors application. Appl Surf Sci 464:479–487

    CAS  Google Scholar 

  24. Zhao J, Li ZF, Yuan XC, Shen T, Lin LG, Zhang M, Meng A, Li QD (2019) Novel core-shell multi-dimensional hybrid nanoarchitectures consisting of Co(OH)(2) nanoparticles / Ni3S2 nanosheets grown on SiC nanowire networks for high-performance asymmetric supercapacitors. Chem Eng J 357:21–32

    CAS  Google Scholar 

  25. Singu BS, Yoon KR (2019) Exfoliated graphene manganese oxide nanocomposite electrode materials for supercapacitor. J Alloys Compds 770:1189–1199

    CAS  Google Scholar 

  26. Patil DS, Pawar SA, Shin JC (2018) Silver decorated PEDOT:PSS wrapped MnO2 nanowires for electrochemical supercapacitor applications. J Ind Eng Chem 62:166–175

    CAS  Google Scholar 

  27. Abdah MAAM, Edris NMMA, Kulandaivalu S, Rahman NA, Sulaiman Y (2018) Supercapacitor with superior electrochemical properties derived from symmetrical manganese oxide-carbon fiber coated with polypyrrole. Int J Hyd Energy 43:17328–17337

    Google Scholar 

  28. Garcia-Torres J, Crean C (2018) Ternary composite solid-state flexible supercapacitor based on nanocarbons / manganese dioxide / PEDOT : PSS fibres. Mater Des 155:194–202

    CAS  Google Scholar 

  29. Skotheim TA, Lelsenbaumer R, Reynolds JR, (Eds.) (2006) Hanbook of conducting polymers. conjugated polymers: Processing and Applications, 3ed ed. CRS Press

  30. Snook GA, Kao P, Best AS (2011) Conducting polymer based supercapacitor devices and electrodes. J Power Sources 196:1–12

    CAS  Google Scholar 

  31. Carbas BB, Tekin B (2018) Poly(3,4-ethylenedioxythiophene) electrode grown in the presence of ionic liquid and its symmetrical electrochemical application. Polym Bull 75:1547–1562

    CAS  Google Scholar 

  32. Heinze J, Frontana-Uribe BA, Ludwigs S (2010) Electrochemistry of conducting polymers-persistent models and new concepts. Chem Rev 110:4724–4771

    CAS  PubMed  Google Scholar 

  33. Park SM (1997) Electrochemistry of π-conjugated polymer. In: Nalwa HA (ed) Handbook of organic conductive molecules and polymers, vol 3. Wiley, Chichester

    Google Scholar 

  34. Naveen MH, Gurudatt NG, Noh HB, Shim YB (2016) Dealloyed AuNi dendrite anchored on a functionallized conducting polymer for improved catalytic oxygen reduction and hydrogen peroxide sensing in living cells. Adv Funct Mater 26:1590–1601

    CAS  Google Scholar 

  35. Abdiryim T, Jamal R, Ubul A, Nurulla I (2012) Solid-state synthesis of poly(3′,4′-dimethoxy-2,2′-5′-2-terthiophene) comparison with poly(terthiophene) and poly((3,4-ethylenedioxythiophene)-2,2′:5′,2-terthiophene). Molecules 17:8647–8660

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ju H, Xia B, Elioff MS (2016) A new terthiophene derivative as a fluorescent sensor for protein detection. J Lumin 173:57–65

    Google Scholar 

  37. Kamat PV (2011) Graphene-based nanoassemblies for energy conversion. J Phys Chem Lett 2:242–251

    CAS  Google Scholar 

  38. Mao S, Pu HH, Chen JH (2012) Graphene oxide and its reduction: modeling and experimental progress. RSC Adv 2:2643–2662

    CAS  Google Scholar 

  39. Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228

    CAS  Google Scholar 

  40. Park J, Cho YS, Sung SJ, Byeon M, Yang SJ, Park CR (2018) Characteristics tuning of graphene-oxide based graphene to various end-uses. Energy Storage Materials 14:8–21

    Google Scholar 

  41. Shi X, Zheng S, Wu ZS, Bao X (2018) Recent advances of graphene-based materials for high-performance and new-concepts supercapacitors. J Energy Chem 27:25–42

    Google Scholar 

  42. Pathak AK, Gong H, Singh M, Yokozeki T, Dhakate SR (2019) Enhanced interfacial properties of graphene oxide incorporated carbon fiber reinforced epoxy nanocomposite: a systematic thermal properties investigation. J Polym res 26:article number:23

  43. Mohamadian N, Ghorbani H, Wood DA, Khoshmardan MA (2019) A hybrid nanocomposite of poly(styrene-methyl methacrylate-acrylic acid) / clay as a novel rheology-improvement additive for drilling fluids. J Polym Res 26:Article number:33

  44. Kapoor S, Goyal M, Jindal P (2020) Effect of functionalized multi-walled carbon nanotubes on thermal and mechanical properties of acrylonitrile butadiene styrene nanocomposite. J Polym Res 27:Article number:40

  45. Azizi M, Navidbakhsh M, Hosseinzadeh S, Sajjadi M (2019) Cardiac cell differentiation of muscle satellite cells on aligned composite electrospun polyurethane with reduced graphene oxide. J Polym Res 26: Article number:258

  46. Xiang M, Li C, Ye L (2019) Polyamide 6 / reduced graphene oxide nanocomposites prepared via reactive melt processing: formation of crystalline / network structure and electrically conductive properties. J Polym Res 26: Article number:104

  47. He Z, Zhang Z, Bi S (2019) Long-range crystal alignment with polymer additive for organic thin film transistors. J Polym Res 26: Article number:173

  48. He Z, Zhang Z, Bi S, Asare-Yeboah K, Chen J (2020) Ultra-low misorientation angle in small-molecule semiconductor / polyethylene oxide blends for organic thin film transistors. J Polym Res 27:Article number:75

  49. Zhou H, Yan Z, Yang X, Lv J, Kang L, Liu ZH (2016) rGO/MnO2/Polypyrrole ternary film electrode for supercapacitor. Mater Chem Phys 177:40–47

    CAS  Google Scholar 

  50. Gul Y, Xing X (2015) Song C (2015) fabrication of poly(p-styrene sulfonate) grafted reduced graphene oxide / polyaniline / MnO2 hybrids with high capacitance performance. Mater Chem Phys 167:330–337

    Google Scholar 

  51. He Z, Zhang Z, Bi S, Chen J, Li D (2020) Conjugated polymer controlled morphology and charge transport of small-molecule organic semiconductors. Sci Reports 10:article number:4344

  52. He Z, Chen J, Li D (2019) Polymer additive controlled morphology for high performance organic thin film transistors. Soft Matter 15(29):5790–5803

    CAS  PubMed  Google Scholar 

  53. Bi S, Li Y, He Z, Ouyang Z, Guo Q, Jiang C (2019) Self-assembly diketopyrrolo pyrrole based materials and polymer blend with enhanced crystals alignment and property for organic field-effect transistors. Org Electronics 65:96–99

    CAS  Google Scholar 

  54. He Z, Zhang Z, Bi S (2020) Nanoparticles for organic electronics applications. Mater Res Express 7:Article number:012004

  55. He Z, Xiao K, Durant W, Hensley DK, Antony JE, Hong K, Michael Kilbey IIS, Chen J, Li D (2011) Enhanced performance consistency in nanoparticle / TIPS pentacene-based organic thin film transistors. Adv Funct Mater 21:3617–3623

    CAS  Google Scholar 

  56. He Z, Zhang Z, Bi S (2019) Nanoscale alignment of semiconductor crystals for high-fidelity organic electronics applications, Appl Nanosci in press

  57. Ning P, Duan X, Ju DX, Lin X, Tong X, Pan X, Wang T, Li Q (2016) Facile synthesis of carbon nanofibers / MnO2 nanosheets as high-performance electrodes for asymmetric supercapacitors. Electrochim Acta 210:754–761

    CAS  Google Scholar 

  58. Ashwin Karthick N, Thangappan R, Arivanandhan M, Gnanamani A, Jayavel R (2018) A facile synthesis of ferrocene functionalized graphene oxide nanocomposite for electrochemical sensing of lead. J Inorg Organomet Polym Mater 28:1021–1028

    CAS  Google Scholar 

  59. Bharathidasan P, Sridhar S, Vishnu Vardhan P, Sivakkumar SR, Dong-Won K, Devaraj S (2018) High capacitance and long cycle-life of nitrogen doped reduced graphene oxide. J Mater Sci Mater Electron 29:7661–7667

    CAS  Google Scholar 

  60. Li X, Xu X, Xia F, Bu L, Qiu H, Chen M, Zhang L, Gao J (2014) Electrochemically active MnO2 / RGO nanocomposites using Mn powder as the reducing agent of RGO and the MnO2 precursor. Electrochim Acta 130:305–313

    CAS  Google Scholar 

  61. Pan Y, Hou Z, Yang H, Liu Y (2015) Hierarchical architecture of nanographene-coatedrice-like manganese dioxide nanorods/graphene for enhanced electrocatalytic activity toward hydrogen peroxide reduction. Mater Sci Semicond Process 40:176–182

    CAS  Google Scholar 

  62. Jin X, Zhou W, Zhang S, Chen GZ (2007) Nano-scale microelectrochemical cells on carbon nanotubes. Small 3:1513–1517

    CAS  PubMed  Google Scholar 

  63. Chi HZ, Tian S, Hu X, Qin H, Xi J (2014) Direct growth of MnO2 on carbon fiber cloth for electrochemical capacitor. J Alloys Compounds 587:354–360

    CAS  Google Scholar 

  64. Ullah S, Yu J, Liu H, Iqbal W, Yang B, Li C, Zhu C, Xu J (2019) Fabrication of MnO2-carbonized cotton yarn derived hierrachical porous active carbon flexible supercapacitor electrodes for potential applications in cable-type devices. Appl Surf Sci 487:180–188

    CAS  Google Scholar 

  65. Sivakkumara SR, Howlett PC, Winther-Jensenb B, Forsythb M, MacFarlane DR (2009) Polyterthiophene/CNT composite as a cathode material for lithium batteries employing an ionic liquid electrolyte. Electrochim Acta 54:6844–6849

    Google Scholar 

  66. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    CAS  Google Scholar 

  67. Low FW, Lai CW, Abd HSB (2015) Easy preparation of ultrathin reduced graphene oxide sheets at a high stirring speed. Ceram Int 41:5798–5806

    CAS  Google Scholar 

  68. Jamal R, Zhang L, Wang M, Zhao Q, Abdiryim T (2016) Synthesis of poly(3,4-propylenedioxythiophene)/MnO2 composites and their applications in the adsorptive removal of methylene blue. Progress in Natural Science: Materials International 26:32–40

    CAS  Google Scholar 

  69. Kumar N, Direshkumar P, Rameshbabu R, Sen A (2015) Morphological analysis of ultra fine α-MnO2 nanowires under different reaction conditions. Mater Lett 158:309–312

    CAS  Google Scholar 

  70. Moghayedi M, Goharshadi EK, Ghazvini K, Ahmadzadeh H, Ranjbaran L, Masoudi R, Ludwig R (2017) Kinetics and mechanism of antibacterial activity and cytotoxicity of Ag-RGO nanocomposite. Colloids Surfaces B-Biointerfaces 159:366–374

    CAS  Google Scholar 

  71. Majumdar D, Bhattacharya SK (2016) Synthesis, characterization and electrochemical study of hydroxy-functionalized graphene/MnO2 nanocomposite. Materials Today-Proceedings 3:3872–3877

    Google Scholar 

  72. Wang Y, Wang W, Wang S, Chu W, Wei T, Tao H, Zhang C, Sun Y (2016) Enhanced photoelectrochemical detection of l-cysteine based on the ultrathin polythiophene layer sensitized anatase TiO2 on F-doped tinoxide substrates. Sens Actuat B 232:448–453

    CAS  Google Scholar 

  73. Jeon SS, Yang SJ, Lee KJ, S.S. Im SS (2010) A facile and rapid synthesis of unsubstituted polythiophene with high electrical conductivity using binary organic solvents. Polymer 51:4069–4076

  74. Patil BH, Jagadale AD, Lokhande CD (2012) Synthesis of polythiophene thin films by simple successive ionic layer adsorption and reaction (SILAR) method for supercapacitor application. Synth Met 162:1400–1405

    CAS  Google Scholar 

  75. Song YJ, Jo WJ (2010) Multi-walled carbon nanotubes covalently attached with poly(3-hexylthiophene) for enhancement of field-effect mobility of poly(3-hexylthiophene) / multi-walled carbon nanotube composites. Carbon 48:389–395

    CAS  Google Scholar 

  76. Gadgil B, Damlin P, Aaritalo T, Kankare J, Kvarnstrom C (2013) Electrosynthesis and characterization of vologen cross linked thiophene copolymer. Electrochim Acta 97:378–385

    CAS  Google Scholar 

  77. Balakrishnan K, Manish K, Subramania A (2014) Synthesis of polythiophene and its carbonaceous nanofibers as electrode materials for asymmetric supercapacitors. Adv Mater Research 938:151–157

    CAS  Google Scholar 

  78. Chen J, Feng J, Yan W (2015) Facile synthesis of polythiophene/TiO2 particle composite in aqueous medium and its adsorption performence for Pb(II). RSC Adv 5:86945–86953

    CAS  Google Scholar 

  79. Wang H, Ma L, Gan M, Zhou T, Sun X, Dai W, Wang H, Wang S (2016) Design and assembly of reduced graphene oxide/polyaniline/urchin-like mesoporous TiO2 spheres ternary composite and its application in supercapacitors. Composites. Part B: Engineering 92:405–412

    CAS  Google Scholar 

  80. Li Y, Zhao M, Wang Y, Pan Q, Gong Q, Xia Z, Li Y (2019) Remarkable enhanced performances of novel polythiophene-grafting-graphene oxide composite via long alkoxy linkage for supercapacitor application. Carbon 147:519–531

    CAS  Google Scholar 

  81. Guoa Y, Suna X, Liua Y, Wang W, Qiua H, Gao J (2012) One pot preparation of reduced graphene oxide (rGO) or Au (Ag) nanoparticle-rGO hybrids using chitosan as a reducing and stabilizing agent and their use in methanol electrooxidation. Carbon 50:2513–2523

    Google Scholar 

  82. Yue D, Luo W, Wang RY, Li CY, Chang JZ, Wang ZL (2013) A facile synthesis and optical properties of bundle-shaped TbPO4 center dot H2O nanorods. Adv Cond Mater Phys Article ID: 673945

  83. Huang SL, He B, Yan XL, Khan I, Wang JY, Gao MY, Lan JS, Li SP, Kang JY (2018) Hierarchical ZnO/Si nanowire arrays as an effective substrate for surface-enhanced Raman scattering application. Sensors and Actuators B-Chemical 273:48–55

    CAS  Google Scholar 

  84. Chen F, An W, Liu L, Liang Y, Cui W (2017) Highly effiicient removal of bisphemol a by a three-dimensional graphene hydrogel-AgBr@GO exhibiting adsorption / photocatalysis synergy. Appl Catalysis B: Environmental 217:65–80

    CAS  Google Scholar 

  85. Paredes JI, Villar RS, Solis FP, Martinez AA, Tascon JMD (2009) Atomic force and scanning tunneling microscopy imaging of grapheme nanosheets derived from graphite oxide. Langmuir 25:5957–5968

    CAS  PubMed  Google Scholar 

  86. Chen F, Shi G, Zhang J, Fu M (2003) Raman spectroscopic studies on the structural changes of electrosynthesized polythiophene films during the heating and cooling processes. Thin Solid Films 424:283–290

    CAS  Google Scholar 

  87. Yu W, Zhou J, Bragg AE (2012) Exciton conformational dynamics of poly(3-hexylthiophene) (P3HT) in solution from time-resolved resonant-Raman spectroscopy. The Journal of Physical Chemistry Letters 3:1321–1328

    CAS  PubMed  Google Scholar 

  88. Ogurtsov NA, Bliznyuk VN, Mamykin AV, Kukla OL, Piryatinski YP, Pud AA (2018) Polyvinylidene fluoride / poly(3-methylthiophene) core shell nanocomposites with improved structural and electronic properties of the conducting polymer component. Phys Chem Chem Phys 20:6450–6461

    CAS  PubMed  Google Scholar 

  89. Inagaki CS, Oliveria MM, Bergamini MF, Marcolino-Junior LH, AJG Z (2019) Facile synthesis and dopamine sensing application of three component nanocomposite thin films based on polythiophene, gold nanoparticles and carbon nanotubes. J Electroanal Chem 840:208–217

    CAS  Google Scholar 

  90. Sumboja A, Foo CY, Wang X, Lee PS (2019) Large areal mass flexible and free-standing reduced graphene oxide / manganese dioxide paper for asymmetric supercapacitor device. Adv Mater 25:659–677

    Google Scholar 

  91. Wu H, La M, Li J, Han Y, Feng Y, Peng Q, Hao C (2019) Preparation and electrochemical properties of MnO2/Pani-CNTS composites materials. Composite Interfaces 26:659–677

    CAS  Google Scholar 

  92. Liu C, Navale ST, Yang ZB, Galluzzi M, Patil VB, Cao PJ, Mane RS, Stadler FJ (2017) Ethanol gas sensing properties of hydrothermally grown α-MnO2 nanorods. J Alloys Compd 727:362–369

    CAS  Google Scholar 

  93. Kolodziejczyk B, Winther-Jensen O, Kerr R, Firbas P, Winther-Jensen B (2015) Tuning the morphology of electroactive polythiophene nano-structures. Reactive & Functional Polymers 86:60–66

    CAS  Google Scholar 

  94. Khan U, Ryan K, Blau WJ, Coleman JN (2007) The effect of solvent choice on mechanical properties of carbon nanotube-polymer composites. Compos Sci Technol 67:3158–3167

    CAS  Google Scholar 

  95. Hebbar V, Bhajantri RF, Ravikumar HB, Ninganaju S (2019) Role of free volumes in conducting properties of GO and rGO filled PVA-PEDOT:PSS composite free-standing films: a positron annihilation lifetime study. Journal of Physics and Chemistry Solids 126:242–256

    CAS  Google Scholar 

  96. Ghasemi S, Hosseini SR, Boore-talari O (2018) Sonochemical assisted synthesis MnO2/RGO nanohybrid as effective electrode material for supercapacitor. Ultrasonics-Sonochemistry 40:675–685

    CAS  PubMed  Google Scholar 

  97. Gagea BC, Lorgouiloux Y, Altintas Y, Jacobs PA, Martens JA (2009) Bifunctional conversion of n-decane over HPW heteropolyacid incorporated into SBA-15 during synthesis. J Catal 265:99–108

    CAS  Google Scholar 

  98. Singu BS, Yoon KR (2017) Synthesis and characterization of MnO2-decorated graphene for supercapacitors. Electrochim Acta 231:749–758

    CAS  Google Scholar 

  99. Faisal M, Haraz FA, Ismail AA, El-Toni AM, Al-Sayari SA, Al-Hajry A, Al-Assiri MS (2018) Polythiophene / mesoporous SrTiO3 nanocomposites with enhanced photocatalytic activity under visible light. Seperation and Purification Technology 190:33–40

    CAS  Google Scholar 

  100. Chae JH, Chen GZ (2014) Influences of ions and temperature on performance of carbon nanoparticules in supercapacitors with neutral aqueous electrolytes. Particuology 15:9–17

    CAS  Google Scholar 

  101. Oje AL, Ogwu AA, Mirzaeian M, Oje AM, Tsendzughul N (2019) Silver thin film electrodes for supercapacitor application. Appl Surf Sci 488:142–150

    CAS  Google Scholar 

  102. Rasmussen SC, Evenson SJ, McCausland CB (2015) Fluorescent thiophene-based materials and their outlook for emissive applications. Chem Commun 51:4528–4543

    CAS  Google Scholar 

  103. Sardar S, Koley R, Ghorai UK, Pal A, Sengupta S, Roy I, Bandyopadhyay A (2018) Photo-physical and electrochemical properties of oligothiophene in non-polymeric and polymeric solvents. J Mater Structure 1168:187–194

    CAS  Google Scholar 

  104. Zhang F, Cao H, Yue D, Zhang J, Qu M (2012) Enhanced anode performances of polyaniline-TiO2-reduced graphene oxide nanocomposites for lithium ion batteries. Inorg Chem 51:9544–95551

    CAS  PubMed  Google Scholar 

  105. Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance performances. J Phys Chem C 112:4406–4417

    CAS  Google Scholar 

  106. Li X, Xu X, Xia F, Bu L, Qiu H, Chen M, Zhang L, Gao J (2014) Electrochemically active MnO2/RGO nanocomposites using Mn powder as the reducing agent of GO and the MnO2 precursor. Electrochim Acta 130:305–313

    CAS  Google Scholar 

  107. Wakeham DL, Donne SW, Belcher WJ, Dastoor PC (2008) Electrochemical and morphological characterization of electrodeposited poly(2,2′:5′,2″-terthiophene) for photovoltaic applications. Synth Met 158:661–669

    CAS  Google Scholar 

  108. Swathy TS, Jose MA, Antony MJ (2016) AOT assisted preparation of ordered, conducting and dispersible core-shell nanostructured polythiophene-MWCNT nanocomposites. Polymer 103:206–213

    CAS  Google Scholar 

  109. Fatthy M, Gomaa A, Taher FA, El-Fass MM, Kashyout AEB (2016) Optimizing the preparation of GO and rGO for large-scale production. J Mater Sci 51:5664–5675

    Google Scholar 

  110. Huang HH, De Silva KKH, Kumara GRA, Yoshimura M (2018) Structural evolution of hydrothermally derived reduced graphene oxide. Sci Reports 8:6849–6858

    Google Scholar 

  111. Zeng F, Kuang Y, Liu G, Liu R, Huang Z, Fu C, Zhou H (2012) Supercapacitors based on high-quality graphene scrolls. Nanoscale 4:3997–4001

    CAS  PubMed  Google Scholar 

  112. Bolagam R, Boddula R, Srinivasan P (2018) Design and synthesis of ternary composite of polyaniline-sulfonated graphene oxide-TiO2 nanorods: a highly stable electrode material for supercapacitor. J Solid State Electrochem 22:129–139

    CAS  Google Scholar 

  113. Hu Z, Zu L, Jiang Y, Lian H, Liu Y, Li Z, Chen F, Wang X, Cui X (2015) High specific capacitance of polyaniline / mesoporous manganese dioxide composite using KI-H2SO4 electrolyte. Polymers 7:1939–1953

    CAS  Google Scholar 

  114. Wang H, Gao Q, Hu J (2010) Preparation of porous doped carbons and the high performance in electrochemical capacitors. Microporous Mesoporous Mater 131:89–96

    CAS  Google Scholar 

  115. Hamid HH, Elshaer AM, Harb ME, Ebrahim S, Soliman MM (2018) Electrochemical measurement of a conducting polymer for optimizing detector applications. J Electron Mater 47:6036–6041

    CAS  Google Scholar 

  116. Giner-Sanz JJ, Ortega EM, Perez-Herranz V (2018) Optimization of the perturbation amplitude for EIS measurements using a total harmonic distortion based method. J Electrochem Soc 165:E488–E497

    CAS  Google Scholar 

  117. Liu R, Cho SI, Lee SB (2008) Poly(3,4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapacitor. Nanotechnology 19:215710

    PubMed  Google Scholar 

  118. He X, Yang C, Zhang G, Shi D, Huang Q, Xiao H, Liu Y, Xiong R (2016) Supercapacitor of TiO2 nanofibers by electrospinning and KOH treatment. Mater Des 106:74–80

    CAS  Google Scholar 

  119. Kim H, Cho MY, Kim MH, Park KY, Gwon H, Lee Y, Roh KC, Kang K (2013) A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and on activated carbon cathode. Adv Energy Mater 3:1500–1506

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from TUBITAK, Project number: 117 M042. We wish thank to Assoc.Prof.Dr. Murat Turkyilmaz (Trakya Uni., Chemistry Dep., Inorganic Chem. Div. for his TGA/DTA measurements.

Author declaration

The paper was approved to all authors and no conflict of interest for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Ates.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research Highlights

1- rGO/MnO2/PTTh nanocomposites presented as an electrode active material for supercapacitor.

2- R(QR) equivalent circuit model was simulated for EIS analysis.

3- A symmetric supercapacitor device was formed as two electrode configuration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ates, M., Kuzgun, O., Yildirim, M. et al. rGO / MnO2 / Polyterthiophene ternary composite: pore size control, electrochemical supercapacitor behavior and equivalent circuit model analysis. J Polym Res 27, 202 (2020). https://doi.org/10.1007/s10965-020-02183-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02183-5

Keywords

Navigation