Skip to main content

Advertisement

Log in

The main blow spun polymer systems: processing conditions and applications

  • REVIEW PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This review aims at providing an examination of the central polymeric systems that have been tested by the Solution Blow Spinning Technique (SBS). The SBS is an on-demand micro/nanofibrous material forming technique that uses simple instrumentation, thus making its research substantial. Although other studies had already presented the SBS parameters and their correlations with fiber morphology, it’s still unclear for polymeric researchers which systems have already been tested, therefore some questions remain unanswered, such as: “which polymers have been used most in the art?”, “which solvents have promoted the fiber formation?”, “which additives or particles were tested for composite polymer fibers?”, “for which applications have the fibers been targeted?”, “what adaptations have been investigated to overcome the challenges of the process?”. Seventy-nine articles related to polymeric fibers produced by SBS, reported from January 2010 to May 2019, were chosen among four databases, using precise keywords. The principal findings of these articles were presented and reviewed, using additional references as support. From this study, polymeric researchers will have access to the current SBS state-of-the-art, being able to try new polymer-solvents combinations, as well as to solve the existing process inconveniences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kuk E, Ha Y-M, Yu J, Im I-T, Kim Y, Jung YC (2016) Robust and flexible polyurethane composite Nanofibers incorporating multi-walled carbon nanotubes produced by solution blow spinning. Macromol Mater Eng 301(4):364–370

    CAS  Google Scholar 

  2. Souza MA, Sakamoto KY, Mattoso LHC (2014) Release of the Diclofenac sodium by Nanofibers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) obtained from electrospinning and solution blow spinning. J Nanomater 2014:129035

    Google Scholar 

  3. Bonan RF, Bonan PR, Batista AU, Sampaio FC, Albuquerque AJ, Moraes MC, Mattoso LH, Glenn GM, Medeiros ES, Oliveira JE (2015) In vitro antimicrobial activity of solution blow spun poly(lactic acid)/polyvinylpyrrolidone nanofibers loaded with copaiba (Copaifera sp.) oil. Mater Sci Eng C Mater Biol Appl 48:372–377

    CAS  PubMed  Google Scholar 

  4. Tang D, Zhuang X, Zhang C, Cheng B, Li X (2015) Generation of nanofibers via electrostatic-induction-assisted solution blow spinning. J Appl Polym Sci 132(31):42326

    Google Scholar 

  5. Oliveira JE, Mattoso LH, Medeiros ES, Zucolotto V (2012) Poly(lactic acid)/carbon nanotube fibers as novel platforms for glucose biosensors. Biosensors (Basel) 2(1):70–82

    CAS  Google Scholar 

  6. Ahmed J, Matharu RK, Shams T, Illangakoon UE, Edirisinghe M (2018) A comparison of electric-field-driven and pressure-driven Fiber generation methods for drug delivery. Macromol Mater Eng 303(5):1700577

    Google Scholar 

  7. Benavides RE, Jana SC, Reneker DH (2012) Nanofibers from scalable gas jet process. ACS Macro Lett 1(8):1032–1036

    CAS  Google Scholar 

  8. Bolbasov EN, Anissimov YG, Pustovoytov AV, Khlusov IA, Zaitsev AA, Zaitsev KV, Lapin IN, Tverdokhlebov SI (2014) Ferroelectric polymer scaffolds based on a copolymer of tetrafluoroethylene with vinylidene fluoride: fabrication and properties. Mater Sci Eng C Mater Biol Appl 40:32–41

    CAS  PubMed  Google Scholar 

  9. Medeiros ES, Glenn GM, Klamczynski AP, Orts WJ, Mattoso LHC (2009) Solution blow spinning: a new method to produce micro- and nanofibers from polymer solutions. J Appl Polym Sci 113(4):2322–2330

    CAS  Google Scholar 

  10. Li J, Song G, Yu J, Wang Y, Zhu J, Hu Z (2017) Preparation of solution blown Polyamic acid Nanofibers and their Imidization into polyimide Nanofiber Mats. Nanomaterials (Basel) 7(11):395

    Google Scholar 

  11. Bonan RF, Bonan PRF, Batista AUD, Perez DEC, Castellano LRC, Oliveira JE, Medeiros ES (2017) Poly(lactic acid)/poly(vinyl pyrrolidone) membranes produced by solution blow spinning: structure, thermal, spectroscopic, and microbial barrier properties. J Appl Polym Sci 134(19):44802

    Google Scholar 

  12. Bolbasov EN, Stankevich KS, Sudarev EA, Bouznik VM, Kudryavtseva VL, Antonova LV, Matveeva VG, Anissimov YG, Tverdokhlebov SI (2016) The investigation of the production method influence on the structure and properties of the ferroelectric nonwoven materials based on vinylidene fluoride – tetrafluoroethylene copolymer. Mater Chem Phys 182:338–346

    CAS  Google Scholar 

  13. da Silva Parize DD, de Oliveira JE, Foschini MM, Marconcini JM, Mattoso LHC (2016) Poly(lactic acid) fibers obtained by solution blow spinning: effect of a greener solvent on the fiber diameter. J Appl Polym Sci 133(18):43379

    Google Scholar 

  14. RMDC F, Menezes RR, Oliveira JE, de Medeiros ES (2015) Production of submicrometric fibers of mullite by solution blow spinning (SBS). Mater Lett 149:47–49

    Google Scholar 

  15. Souza MA, Oliveira JE, Medeiros ES, Glenn GM, Mattoso LH (2015) Controlled release of linalool using Nanofibrous membranes of poly(lactic acid) obtained by electrospinning and solution blow spinning: a comparative study. J Nanosci Nanotechnol 15(8):5628–5636

    CAS  PubMed  Google Scholar 

  16. da Silva Parize DD, Foschini MM, de Oliveira JE, Klamczynski AP, Glenn GM, Marconcini JM, Mattoso LHC (2016) Solution blow spinning: parameters optimization and effects on the properties of nanofibers from poly(lactic acid)/dimethyl carbonate solutions. J Mater Sci 51(9):4627–4638

    Google Scholar 

  17. Abdal-Hay A, Oh YS, Yousef A, Pant HR, Vanegas P, Lim JK (2014) In vitro deposition of Ca-P nanoparticles on air jet spinning nylon 6 Nanofibers scaffold for bone tissue engineering. Appl Surf Sci 307:69–76

    CAS  Google Scholar 

  18. Abdal-Hay A, Hamdy AS, Khalil KA, Lim JH (2015) A novel simple one-step air jet spinning approach for deposition of poly(vinyl acetate)/hydroxyapatite composite nanofibers on Ti implants. Mater Sci Eng C Mater Biol Appl 49:681–690

    CAS  PubMed  Google Scholar 

  19. Oliveira JE, Moraes EA, Costa RGF, Afonso AS, Mattoso LHC, Orts WJ, Medeiros ES (2011) Nano and submicrometric fibers of poly(D,L-lactide) obtained by solution blow spinning: Process and solution variables. J Appl Polym Sci 122(5):3396–3405

    CAS  Google Scholar 

  20. Shang JH, Benavides RE, Jana SC (2014) Effects of polymer viscosity and Nanofillers on morphology of Nanofibers obtained by a gas jet method. Int Polym Process 29(1):103–111

    CAS  Google Scholar 

  21. Wojasiński M, Pilarek M, Ciach T (2014) Comparative studies of electrospinning and solution blow spinning processes for the production of Nanofibrous poly(L-lactic acid) materials for biomedical engineering. Pol J Chem Technol 16(2):43–50

    Google Scholar 

  22. Magaz A, Roberts AD, Faraji S, Nascimento TRL, Medeiros ES, Zhang W, Greenhalgh RD, Mautner A, Li X, Blaker JJ (2018) Porous, aligned, and biomimetic fibers of regenerated silk fibroin produced by solution blow spinning. Biomacromolecules 19(12):4542–4553

    CAS  PubMed  Google Scholar 

  23. Behrens AM, Casey BJ, Sikorski MJ, Wu KL, Tutak W, Sandler AD, Kofinas P (2014) In situ deposition of PLGA Nanofibers via solution blow spinning. ACS Macro Lett 3(3):249–254

    CAS  Google Scholar 

  24. Srinivasan S, Chhatre SS, Mabry JM, Cohen RE, McKinley GH (2011) Solution spraying of poly(methyl methacrylate) blends to fabricate microtextured, superoleophobic surfaces. Polymer 52(14):3209–3218

    CAS  Google Scholar 

  25. Tutak W, Sarkar S, Lin-Gibson S, Farooque TM, Jyotsnendu G, Wang D, Kohn J, Bolikal D, Simon Jr CG (2013) The support of bone marrow stromal cell differentiation by airbrushed nanofiber scaffolds. Biomaterials 34(10):2389–2398

    CAS  PubMed  Google Scholar 

  26. Cena CR, Silva MJ, Malmonge LF, Malmonge JA (2018) Poly(vinyl pyrrolidone) sub-microfibers produced by solution blow spinning. J Polym Res 25(11):238

    Google Scholar 

  27. Martinez-Sanz M, Bilbao-Sainz C, Du WX, Chiou BS, Williams TG, Wood DF, Imam SH, Orts WJ, Lopez-Rubio A, Lagaron JM (2015) Antimicrobial poly(lactic acid)-based Nanofibres developed by solution blow spinning. J Nanosci Nanotechnol 15(1):616–627

    CAS  PubMed  Google Scholar 

  28. Oliveira JE, Moraes EA, Marconcini JM, LHC M, Glenn GM, Medeiros ES (2013) Properties of poly(lactic acid) and poly(ethylene oxide) solvent polymer mixtures and nanofibers made by solution blow spinning. J Appl Polym Sci 129(6):3672–3681

    CAS  Google Scholar 

  29. Bedeloğlu AC, Bhullar SK, Borazan I, Cin ZI, Demir A (2017) Manufacturing and morphology of poly(−caprolactone) based microfibre webs for biomedical applications through airbrush technique. Indian J Fibre Text Res 42(1):38–42

    Google Scholar 

  30. Deneff JI, Walton KS (2019) Production of metal-organic framework-bearing polystyrene fibers by solution blow spinning. Chem Eng Sci 203:220–227

    CAS  Google Scholar 

  31. Abdal-Hay A, Barakat NM, Lim JK (2012) Novel technique for polymeric Nanofibers preparation: air jet spinning. Sci Adv Mater 4(12):1268–1275

    CAS  Google Scholar 

  32. Tutak W, Gelven G, Markle C, Palmer X-L (2015) Rapid polymer fiber airbrushing: impact of a device design on the fiber fabrication and matrix quality. J Appl Polym Sci 132(47):42813

    Google Scholar 

  33. DDDS P, Oliveira JE, Williams T, Wood D, Avena-Bustillos RJ, Klamczynski AP, Glenn GM, Marconcini JM, LHC M (2017) Solution blow spun nanocomposites of poly(lactic acid)/cellulose nanocrystals from Eucalyptus Kraft pulp. Carbohydr Polym 174:923–932

    Google Scholar 

  34. Abdal-hay A, Sheikh FA, Lim JK (2013) Air jet spinning of hydroxyapatite/poly(lactic acid) hybrid nanocomposite membrane mats for bone tissue engineering. Colloids Surf B Biointerfaces 102:635–643

    CAS  PubMed  Google Scholar 

  35. Rajgarhia S, Jana SC (2017) Influence of secondary stretching on diameter and morphology of bicomponent polymer nanofibers produced by gas jet fiber process. Polymer 123:219–231

    CAS  Google Scholar 

  36. Abdal-hay A, Makhlouf AS, Khalil KA (2015) Novel, facile, single-step technique of polymer/TiO(2) Nanofiber composites membrane for Photodegradation of methylene blue. ACS Appl Mater Interfaces 7(24):13329–13341

    CAS  PubMed  Google Scholar 

  37. Zhang X, Lv J, Yin X, Li Z, Lin Q, Zhu L (2018) Nanofibrous polystyrene membranes prepared through solution blow spinning with an airbrush and the facile application in oil recovery. Appl Phys A Mater Sci Process 124(5):362

    Google Scholar 

  38. Hofmann E, Kruger K, Haynl C, Scheibel T, Trebbin M, Forster S (2018) Microfluidic nozzle device for ultrafine fiber solution blow spinning with precise diameter control. Lab Chip 18(15):2225–2234

    CAS  PubMed  Google Scholar 

  39. Abdal-hay A, Memic A, Hussein KH, Oh YS, Fouad M, Al-Jassir FF, Woo H-M, Morsi Y, Mo X, Ivanovski S (2017) Rapid fabrication of highly porous and biocompatible composite textile tubular scaffold for vascular tissue engineering. Eur Polym J 96:27–43

    CAS  Google Scholar 

  40. Francois S, Sarra-Bournet C, Jaffre A, Chakfe N, Durand B, Laroche G (2010) Characterization of an air-spun poly(L-lactic acid) nanofiber mesh. J Biomed Mater Res B Appl Biomater 93(2):531–543

    PubMed  Google Scholar 

  41. Hoffman K, Skrtic D, Sun J, Tutak W (2015) Airbrushed composite polymer Zr-ACP nanofiber scaffolds with improved cell penetration for bone tissue regeneration. Tissue Eng Part C Methods 21(3):284–291

    CAS  PubMed  Google Scholar 

  42. Abdal-Hay A, Abdelrazek Khalil K, Al-Jassir FF, Gamal-Eldeen AM (2017) Biocompatibility properties of polyamide 6/PCL blends composite textile scaffold using EA.hy926 human endothelial cells. Biomed Mater 12(3):035002

    PubMed  Google Scholar 

  43. Polat Y, Pampal ES, Stojanovska E, Simsek R, Hassanin A, Kilic A, Demir A, Yilmaz S (2016) Solution blowing of thermoplastic polyurethane nanofibers: a facile method to produce flexible porous materials. J Appl Polym Sci 133(9):43025

    Google Scholar 

  44. Costa RGF, Brichi GS, Ribeiro C, Mattoso LHC (2016) Nanocomposite fibers of poly(lactic acid)/titanium dioxide prepared by solution blow spinning. Polym Bull 73(11):2973–2985

    CAS  Google Scholar 

  45. Lou H, Han W, Wang X (2014) Numerical study on the solution blowing annular jet and its correlation with Fiber morphology. Ind Eng Chem Res 53(7):2830–2838

    CAS  Google Scholar 

  46. Lou H, Li W, Li C, Wang X (2013) Systematic investigation on parameters of solution blown micro/nanofibers using response surface methodology based on box-Behnken design. J Appl Polym Sci 130(2):1383–1391

    CAS  Google Scholar 

  47. Sinha-Ray S, Sinha-Ray S, Yarin AL, Pourdeyhimi B (2015) Theoretical and experimental investigation of physical mechanisms responsible for polymer nanofiber formation in solution blowing. Polymer 56:452–463

    CAS  Google Scholar 

  48. Stojanovska E, Canbay E, Pampal ES, Calisir MD, Agma O, Polat Y, Simsek R, Gundogdu NAS, Akgul Y, Kilic A (2016) A review on non-electro nanofibre spinning techniques. RSC Adv 6(87):83783–83801

    CAS  Google Scholar 

  49. Daristotle JL, Behrens AM, Sandler AD, Kofinas P (2016) A review of the fundamental principles and applications of solution blow spinning. ACS Appl Mater Interfaces 8(51):34951–34963

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Teno J, González-Gaitano G, González-Benito J (2017) Poly (ethylene-co-vinyl acetate) films prepared by solution blow spinning: surface characterization and its relation with E. coli adhesion. Polym Test 60:140–148

    CAS  Google Scholar 

  51. Rempel SP, Engler LG, Soares MRF, Catafesta J, Moura S, Bianchi O (2019) Nano/microfibers of EVA copolymer obtained by solution blow spinning: processing, solution properties, and pheromone release application. J Appl Polym Sci 136(24):47647

    Google Scholar 

  52. González Benito FJ, Teno Díaz J, Torres DD, M. (2017) Solution blow spinning and obtaining submicrometric fibers of different polymers. Int J Nanoparticles Nanotech 3(1):007

    Google Scholar 

  53. Khattab TA, Rehan M, Aly SA, Hamouda T, Haggag KM, Klapötke TM (2017) Fabrication of PAN-TCF-hydrazone nanofibers by solution blowing spinning technique: naked-eye colorimetric sensor. J Environ Chem Eng 5(3):2515–2523

    CAS  Google Scholar 

  54. Ren J, Huang X, Wang N, Lu K, Zhang X, Li W, Liu D (2016) Preparation of polyaniline-coated polyacrylonitrile fiber mats and their application to Cr(VI) removal. Synth Met 222:255–266

    CAS  Google Scholar 

  55. Zhuang X, Jia K, Cheng B, Guan K, Kang W, Ren Y (2013) Preparation of Polyacrylonitrile Nanofibers by solution blowing process. J Eng Fiber Fabr. https://doi.org/10.1177/155892501300800111

  56. Shi L, Zhuang X, Tao X, Cheng B, Kang W (2013) Solution blowing nylon 6 nanofiber mats for air filtration. Fibers Polym 14(9):1485–1490

    CAS  Google Scholar 

  57. Oliveira JE, Mattoso LHC, Orts WJ, Medeiros ES (2013) Structural and morphological characterization of micro and Nanofibers produced by electrospinning and solution blow spinning: a comparative study. Adv Mater Sc Eng 2013:409572

    Google Scholar 

  58. Lv J, Yin X, Li R, Chen J, Lin Q, Zhu L (2019) Superhydrophobic PCL/PS composite nanofibrous membranes prepared through solution blow spinning with an airbrush for oil adsorption. Polym Eng Sci 59(S1):E171–E181

    CAS  Google Scholar 

  59. Chen C, Townsend AD, Sell SA, Martin RS (2017) Microchip-based 3D-cell culture using polymer Nanofibers generated by solution blow spinning. Anal Methods 9(22):3274–3283

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Simbara MMO, Santos Jr AR, Andrade AJP, Malmonge SM (2019) Comparative study of aligned and nonaligned poly(epsilon-caprolactone) fibrous scaffolds prepared by solution blow spinning. J Biomed Mater Res B Appl Biomater 107(5):1462–1470

    CAS  PubMed  Google Scholar 

  61. Hell AF, Simbara MMO, Rodrigues P, Kakazu DA, Malmonge SM (2018) Production of fibrous polymer scaffolds for tissue engineering using an automated solution blow spinning system. Res Biomed Eng 34(3):273–278

    Google Scholar 

  62. Behrens AM, Kim J, Hotaling N, Seppala JE, Kofinas P, Tutak W (2016) Rapid fabrication of poly(DL-lactide) nanofiber scaffolds with tunable degradation for tissue engineering applications by air-brushing. Biomed Mater 11(3):035001

    PubMed  PubMed Central  Google Scholar 

  63. Medeiros ELG, Braz AL, Porto IJ, Menner A, Bismarck A, Boccaccini AR, Lepry WC, Nazhat SN, Medeiros ES, Blaker JJ (2016) Porous bioactive Nanofibers via cryogenic solution blow spinning and their formation into 3D macroporous scaffolds. ACS Biomater Sci Eng 2(9):1442–1449

    CAS  Google Scholar 

  64. Tomecka E, Wojasinski M, Jastrzebska E, Chudy M, Ciach T, Brzozka Z (2017) Poly(l-lactic acid) and polyurethane nanofibers fabricated by solution blow spinning as potential substrates for cardiac cell culture. Mater Sci Eng C Mater Biol Appl 75:305–316

    CAS  PubMed  Google Scholar 

  65. Liang F, Fang F, Zeng J, Wang Z, Ou W, Chen X, Wu P, Wang H, Zhang L (2017) Fabrication of three-dimensional micro-nanofiber structures by a novel solution blow spinning device. AIP Adv 7(2):025002

    Google Scholar 

  66. Bilbao-Sainz C, Chiou B-S, Valenzuela-Medina D, Du W-X, Gregorski KS, Williams TG, Wood DF, Glenn GM, Orts WJ (2014) Solution blow spun poly(lactic acid)/hydroxypropyl methylcellulose nanofibers with antimicrobial properties. Eur Polym J 54:1–10

    CAS  Google Scholar 

  67. Oliveira JE, Zucolotto V, Mattoso LH, Medeiros ES (2012) Multi-walled carbon nanotubes and poly(lactic acid) nanocomposite fibrous membranes prepared by solution blow spinning. J Nanosci Nanotechnol 12(3):2733–2741

    CAS  PubMed  Google Scholar 

  68. Oliveira JE, Medeiros ES, Cardozo L, Voll F, Madureira EH, Mattoso LH, Assis OB (2013) Development of poly(lactic acid) nanostructured membranes for the controlled delivery of progesterone to livestock animals. Mater Sci Eng C Mater Biol Appl 33(2):844–849

    CAS  PubMed  Google Scholar 

  69. Oliveira J, Brichi GS, Marconcini JM, Mattoso LHC, Glenn GM, Medeiros ES (2014) Effect of solvent on the physical and morphological properties of poly(lactic acid) Nanofibers obtained by solution blow spinning. J Eng Fiber Fabr 9(4):117–125

    Google Scholar 

  70. Sabbatier G, Abadie P, Dieval F, Durand B, Laroche G (2014) Evaluation of an air spinning process to produce tailored biosynthetic nanofibre scaffolds. Mater Sci Eng C Mater Biol Appl 35:347–353

    CAS  PubMed  Google Scholar 

  71. Granados-Hernandez MV, Serrano-Bello J, Montesinos JJ, Alvarez-Gayosso C, Medina-Velazquez LA, Alvarez-Fregoso O, Alvarez-Perez MA (2018) In vitro and in vivo biological characterization of poly(lactic acid) fiber scaffolds synthesized by air jet spinning. J Biomed Mater Res B Appl Biomater 106(6):2435–2446

    CAS  PubMed  Google Scholar 

  72. Suarez-Franco JL, Vazquez-Vazquez FC, Pozos-Guillen A, Montesinos JJ, Alvarez-Fregoso O, Alvarez-Perez MA (2018) Influence of diameter of fiber membrane scaffolds on the biocompatibility of hPDL mesenchymal stromal cells. Dent Mater J 37(3):465–473

    PubMed  Google Scholar 

  73. Cerna Nahuis LE, Alvim Valente C, de Freitas OD, de Souza Basso NR, Antonio Malmonge J (2019) Preparation and characterization of polymeric microfibers of PLGA and PLGA/PPy composite fabricated by solution blow spinning. Macromol Symp 383(1):1800030

    Google Scholar 

  74. Miranda KWE, Mattoso LHC, Bresolin JD, Hubinger SZ, Medeiros ES, de Oliveira JE (2019) Polystyrene bioactive nanofibers using orange oil as an ecofriendly solvent. J Appl Polym Sci 136(15):47337

    Google Scholar 

  75. Teno J, González-Gaitano G, González-Benito J (2017) Nanofibrous polysulfone/TiO2 nanocomposites: surface properties and their relation with E. coliadhesion. J Polym Sci B Polym Phys 55(21):1575–1584

    CAS  Google Scholar 

  76. Guan KT, Zhuang XP, Yan GL, Cheng BW (2011) Fabrication and properties of polyurethane Nanofibers nonwoven by solution blowing. Adv Mater Res 332-334:1339–1342

    CAS  Google Scholar 

  77. Dias YJ, Gimenes TC, Torres SAPV, Malmonge JA, Gualdi AJ, de Paula FR (2017) PVDF/Ni fibers synthesis by solution blow spinning technique. J Mater Sci Mater Eletron 29(1):514–518

    Google Scholar 

  78. Dias GC, Cellet TSP, Santos MC, Sanches AO, Malmonge LF (2019) PVDF nanofibers obtained by solution blow spinning with use of a commercial airbrush. J Polym Res 26(4):87

    Google Scholar 

  79. Zhuang X, Shi L, Jia K, Cheng B, Kang W (2013) Solution blown nanofibrous membrane for microfiltration. J Memb Sci 429:66–70

    CAS  Google Scholar 

  80. González-Benito J, Teno J, González-Gaitano G, Xu S, Chiang MY (2017) PVDF/TiO2 nanocomposites prepared by solution blow spinning: surface properties and their relation with S. Mutans adhesion. Polym Test 58:21–30

    Google Scholar 

  81. Vural M, Behrens AM, Ayyub OB, Ayoub JJ, Kofinas P (2015) Sprayable elastic conductors based on block copolymer silver nanoparticle composites. ACS Nano 9(1):336–344

    CAS  PubMed  Google Scholar 

  82. Sow PK, Ishita SR (2018) Sustainable approach to recycle waste polystyrene to high-value submicron fibers using solution blow spinning and application towards oil-water separation. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2018.11.031

  83. Liu F, Avena-Bustillos RJ, Woods R, Chiou BS, Williams TG, Wood DF, Bilbao-Sainz C, Yokoyama W, Glenn GM, McHugh TH, Zhong F (2016) Preparation of Zein fibers using solution blow spinning method. J Food Sci 81(12):N3015–N3025

    CAS  PubMed  Google Scholar 

  84. Liu F, Avena-Bustillos RJ, Bilbao-Sainz C, Woods R, Chiou BS, Wood D, Williams T, Yokoyama W, Glenn GM, McHugh TH, Zhong F (2017) Solution blow spinning of food-grade gelatin Nanofibers. J Food Sci 82(6):1402–1411

    CAS  PubMed  Google Scholar 

  85. Paschoalin RT, Traldi B, Aydin G, Oliveira JE, Rutten S, Mattoso LHC, Zenke M, Sechi A (2017) Solution blow spinning fibres: new immunologically inert substrates for the analysis of cell adhesion and motility. Acta Biomater 51:161–174

    CAS  PubMed  Google Scholar 

  86. Nepomuceno NC, Barbosa MA, Bonan RF, Oliveira JE, Sampaio FC, Medeiros ES (2018) Antimicrobial activity of PLA/PEG nanofibers containing terpinen-4-ol against Aggregatibacter actinomycetemcomitans. J Appl Polym Sci 135(6):45782

    Google Scholar 

  87. Singh R, Ahmed F, Polley P, Giri J (2018) Fabrication and characterization of Core-Shell Nanofibers using a next-generation airbrush for biomedical applications. ACS Appl Mater Interfaces 10(49):41924–41934

    CAS  PubMed  Google Scholar 

  88. Santos AMC, Medeiros ELG, Blaker JJ, Medeiros ES (2016) Aqueous solution blow spinning of poly(vinyl alcohol) micro- and nanofibers. Mater Lett 176:122–126

    CAS  Google Scholar 

  89. Kolbasov A, Sinha-Ray S, Joijode A, Hassan MA, Brown D, Maze B, Pourdeyhimi B, Yarin AL (2015) Industrial-scale solution blowing of soy protein Nanofibers. Ind Eng Chem Res 55(1):323–333

    Google Scholar 

  90. Abdal-hay A, Hamdy AS, Lim JH (2014) Facile preparation of titanium dioxide micro/nanofibers and tubular structures by air jet spinning. Ceram Int 40(10):15403–15409

    CAS  Google Scholar 

  91. Yu JH, Fridrikh SV, Rutledge GC (2006) The role of elasticity in the formation of electrospun fibers. Polymer 47(13):4789–4797

    CAS  Google Scholar 

  92. Boger DV (1977) A highly elastic constant-viscosity fluid. J Non-newton Fluid Mech 3:87–91

    CAS  Google Scholar 

  93. Fang Y, Dulaney AD, Gadley J, Maia JM, Ellison CJ (2015) Manipulating characteristic timescales and fiber morphology in simultaneous centrifugal spinning and photopolymerization. Polymer 73:42–51

    CAS  Google Scholar 

  94. Lopes AR (2016) Caracterização de soluções poliméricas para aplicação em revestimentos para a conservação de produtos alimentares. Master's thesis, Universidade D Coimbra

  95. Regev O, Vandebril S, Zussman E, Clasen C (2010) The role of interfacial viscoelasticity in the stabilization of an electrospun jet. Polymer 51(12):2611–2620

    CAS  Google Scholar 

  96. Roland CM, Archer LA, Mott PH, Sanchez-Reyes J (2004) Determining rouse relaxation times from the dynamic modulus of entangled polymers. J Rheol 48(2):395–403

    CAS  Google Scholar 

  97. Shenoy SL, Bates WD, Frisch HL, Wnek GE (2005) Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit. Polymer 46(10):3372–3384

    CAS  Google Scholar 

  98. Rajendran M, Bhattacharya AK (2004) Production of rare-earth orthoferrite ceramic fibres by aqueous sol-gel blow spinning process. J Eur Ceram Soc 24(1):111–117

    CAS  Google Scholar 

  99. Hildebrand JH, Scott RL (1964) The solubility of nonelectrolytes3d edn. Dover Publications, New York

    Google Scholar 

  100. Cena CR, Torsoni GB, Zadorosny L, Malmonge LF, Carvalho CL, Malmonge JA (2017) BSCCO superconductor micro/nanofibers produced by solution blow-spinning technique. Ceram Int 43(10):7663–7667

    CAS  Google Scholar 

  101. Cena CR, Behera AK, Behera B (2016) Structural, dielectric, and electrical properties of lithium niobate microfibers. J Adv Ceram 5(1):84–92

    CAS  Google Scholar 

  102. Graessley W (1980) Polymer chain dimensions and the dependence of viscoelastic properties on concentration, molecular weight and solvent power. Polymer 21(3):258–262

    CAS  Google Scholar 

  103. Cheng B, Tao X, Shi L, Yan G, Zhuang X (2014) Fabrication of ZrO2 ceramic fiber mats by solution blowing process. Ceram Int 40(9):15013–15018

    CAS  Google Scholar 

  104. Zhuang X, Yang X, Shi L, Cheng B, Guan K, Kang W (2012) Solution blowing of submicron-scale cellulose fibers. Carbohydr Polym 90(2):982–987

    CAS  PubMed  Google Scholar 

  105. Khayet M, García-Payo MC, Qusay FA, Khulbe KC, Feng CY, Matsuura T (2008) Effects of gas gap type on structural morphology and performance of hollow fibers. J Memb Sci J 311(1–2):259–269

    CAS  Google Scholar 

  106. Vasireddi R, Kruse J, Vakili M, Kulkarni S, Keller TF, Monteiro DC, Trebbin M (2019) Solution blow spinning of polymer/nanocomposite micro−/nanofibers with tunable diameters and morphologies using a gas dynamic virtual nozzle. Sci Rep 9:14297

    PubMed  PubMed Central  Google Scholar 

  107. Zhang L, Kopperstad P, West M, Hedin N, Fong H (2009) Generation of polymer ultrafine fibers through solution (air-) blowing. J Appl Polym Sci 114(6):3479–3486

    CAS  Google Scholar 

  108. Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM (2005) Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater 72(1):156–165

    PubMed  Google Scholar 

  109. Rotta M, Zadorosny L, Carvalho CL, Malmonge JA, Malmonge LF, Zadorosny R (2016) YBCO ceramic nanofibers obtained by the new technique of solution blow spinning. Ceram Int 42(14):16230–16234

    CAS  Google Scholar 

  110. Costa DL, Leite RS, Neves GA, LNDL S, Medeiros ES, Menezes RR (2016) Synthesis of TiO2 and ZnO nano and submicrometric fibers by solution blow spinning. Mater Lett 183:109–113

    CAS  Google Scholar 

  111. Santos AMC, Mota MF, Leite RS, Neves GA, Medeiros ES, Menezes RR (2018) Solution blow spun titania nanofibers from solutions of high inorganic/organic precursor ratio. Ceram Int 44(2):1681–1689

    CAS  Google Scholar 

  112. Barhoum A, Pal K, Rahier H, Uludag H, Kim IS, Bechelany M (2019) Nanofibers as new-generation materials: from spinning and nano-spinning fabrication techniques to emerging applications. Appl Mater Today 17:1–35

    Google Scholar 

  113. Pampal ES, Stojanovska E, Simon B, Kilic A (2015) A review of nanofibrous structures in lithium ion batteries. J Power Sources 300:199–215

    CAS  Google Scholar 

  114. Tutak W, Kaufman G, Gelven G, Markle C, Maczka C (2016) Uniform, fast, high concentration delivery of bone marrow stromal cells and gingival fibroblasts by gas-brushing. Biomed Phys Eng Express 2(3):035007

    Google Scholar 

  115. Molnár K, Mészáros L (2020) Editorial corner – a personal view: the role of electrospun nanofibers in the fight against the COVID-19. Express Polym Lett 14(7):605

    Google Scholar 

  116. Pehlivaner Kara MO, Ekenseair AK (2016) In situ spray deposition of cell-loaded, thermally and chemically gelling hydrogel coatings for tissue regeneration. J Biomed Mater Res A 104(10):2383–2393

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Brazilian Agency Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) through the scholarships to Silvana Pereira Rempel and Lucas Dall Agnol, and a post-doctoral fellowship to Fernanda Dias.

Author information

Authors and Affiliations

Authors

Contributions

S.P.R. and O.B. had the idea to organize this review to support S.P.R.’s master’s dissertation. F.T.G.D. and L.D. designed the databases search for articles and built Table 1. S.P.R. was responsible for obtaining the copyrights of the Figs. L.D. was responsible for formatting the text and references. F.T.G.D. and O.B. made a critical correction of the document. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Otávio Bianchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, F.T.G., Rempel, S.P., Agnol, L.D. et al. The main blow spun polymer systems: processing conditions and applications. J Polym Res 27, 205 (2020). https://doi.org/10.1007/s10965-020-02173-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02173-7

Keywords

Navigation