Skip to main content

Advertisement

Log in

Preparation and performances of form-stable polyethylene glycol/methylcellulose composite phase change materials

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A series of polyethylene glycol (PEG) /methylcellulose (MC) composites with various PEG mass loading (10%-50 wt%) were prepared via physical blending method as a new type of form-stable composite phase change material (CPCM). The transimission, chemical compatibility, thermal and mechanical properties of form-stable PEG/MC CPCMs were characterized using polarized optic microscopy (POM), Fourier transform infrared (FT-IR) spectrometer, differential scanning calorimetry (DSC), thermal gravimetric analyzer (TGA), and mechanical tester. For PEG/MC composite membranes, the addition of PEG had some effects on the transparency of membranes. As the PEG content reaches 20% (mass fraction), the composites exhibited phase change energy storage capacity. When PEG content increase further, the fusion or solidification enthalpies of the composites raised gradually. The mechanic tests displayed that the fracture strength and elastic modulus of the PEG/MC composites reduced as the PEG loadings increased. While the elongation at break increased first and then decreased. The novel PEG/MC CPCM exhibited suitable thermal performances for latent heat energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lin PC, Xie JJ, He YD, Lu X, Li WJ, Fang J, Yan SH, Zhang L, Sheng XX, Chen Y (2020) MXene aerogel-based phase change materials toward solar energy conversion. Sol Energ Mat Sol C 206:110229

    Article  CAS  Google Scholar 

  2. Mu BY, Li M (2019) Fabrication and characterization of polyurethane-grafted reduced graphene oxide as solid-solid phase change materials for solar energy conversion and storage. Sol Energy 188:230–238

    Article  CAS  Google Scholar 

  3. Madad A, Mouhib T, Mouhsen A (2018) Phase Change Materials for Building Applications: A Thorough Review and New Perspectives. Buildings 8:63

    Article  Google Scholar 

  4. Souayfane F, Fardoun F, Biwole PH (2016) Phase change materials (PCM) for cooling applications in buildings: A review. Energ Buildings 129:396–431

    Article  Google Scholar 

  5. Moldgy A, Parameshwaran R (2018) Study on thermal energy storage properties of organic phase change material for waste heat recovery applications. Mater Today-Proc 5:16840–16848

    Article  CAS  Google Scholar 

  6. Zhai XQ, Wang XL, Wang T, Wang RZ (2013) A review on phase change cold storage in air-conditioning system: Materials and applications. Renew Sust Energ Rev 22:108–120

    Article  CAS  Google Scholar 

  7. Wu WF, Liu N, Cheng WL, Liu Y (2013) Study on the effect of shape-stabilized phase change materials on spacecraft thermal control in extreme thermal environment. Energy Convers Manag 69:174–180

    Article  Google Scholar 

  8. Aydin AA (2013) High-chain fatty acid esters of 1-octadecanol as novel organic phase change materials and mathematical correlations for estimating the thermal properties of higher fatty acid esters' homologous series. Sol Energy Mater Sol Cells 113:44–51

    Article  Google Scholar 

  9. Jiang Y, Ding EY, Li GK (2002) Study on transition characteristics of PEG/CDA solid–solid phase change materials. Polymer 43:117–122

    Article  CAS  Google Scholar 

  10. Krupa I, Sobolciak P, Abdelrazeq H, Ouederni M, Al-Maadeed MA (2017) Natural aging of shape stabilized phase change materials based on paraffin wax. Polym Test 63:567–572

    Article  CAS  Google Scholar 

  11. Li WD, Ding EY (2007) Preparation and characterization of cross-linking PEG/MDI/PE copolymer as solid–solid phase change heat storage material. Sol Energy Mater Sol Cells 91:764–768

    Article  CAS  Google Scholar 

  12. Lian Q, Li Y, Sayyed AAS, Cheng J, Zhang JY (2018) Facile Strategy in Designing Epoxy/Paraffin Multiple Phase Change Materials for Thermal Energy Storage Applications. ACS Sustain Chem Eng 6:3375–3384

    Article  CAS  Google Scholar 

  13. Sari A (2012) Thermal energy storage properties of mannitol–fatty acid esters as novel organic solid–liquid phase change materials. Energy Convers Manag 64:68–78

    Article  CAS  Google Scholar 

  14. Sari A, Alkan C, Bicer A (2012) Synthesis and thermal properties of polystyrene-graft-PEG copolymers as new kinds of solid–solid phase change materials for thermal energy storage. Mater Chem Phys 133:87–94

    Article  CAS  Google Scholar 

  15. Ji LJ, Gong MD, Qiao W, Zhan WQ, Liu QR, Dunham RE, Gu J (2018) A gelatin/PLA-b-PEG film of excellent gas barrier and mechanical properties. J Polym Res 25:210

    Article  Google Scholar 

  16. Aisida SO, Ugwoke E, Uwais A, Iroegbu C, Botha S, Ahmad I, Maaza M, Ezema FI (2019) Incubation period induced biogenic synthesis of PEG enhanced Moringa oleifera silver nanocapsules and its antibacterial activity. J Polym Res 26:225

    Article  CAS  Google Scholar 

  17. Yang HZ, Yu XH, Ge CH, Bai YF, Zhang XD (2020) Hydrothermal Carbon‐Doped Polyethylene Glycol as Phase‐Change Materials with Good Thermal Conductivity and Shape‐Stability. Chemistryselect 5:480–487

    Article  CAS  Google Scholar 

  18. Zhang D, Chen MZ, Wu SP, Riara M, Wan JM, Li YY (2019) Thermal and rheological performance of asphalt binders modified with expanded graphite/polyethylene glycol composite phase change material (EP-CPCM). Constr Build Mater 194:83–91

    Article  CAS  Google Scholar 

  19. Yang YN, Pang Y, Liu Y, Guo HW (2018) Preparation and thermal properties of polyethylene glycol/expanded graphite as novel form-stable phase change material for indoor energy saving. Mater Lett 216:220–223

    Article  CAS  Google Scholar 

  20. Khadiran T, Hussein MZ, Zainal Z, Rusli R (2015) Activated carbon derived from peat soil as a framework for the preparation of shape-stabilized phase change material. Energy 82:468–478

    Article  CAS  Google Scholar 

  21. Hu ZJ, Wang CM, Jia WB, Li X, Cai ZY (2019) Preparation and Thermal Properties of 1-Hexadecanol-Palmitic Acid Eutectic Mixture/Activated Carbon Composite Phase Change Material for Thermal Energy Storage. Chemistryselect 4:222–227

    Article  CAS  Google Scholar 

  22. Atinafu DG, Dong WJ, Wang JJ, Huang XB, Wang JW, Gao HY, Wang G (2018). Eur J Inorg Chem 5167

  23. Liu YR, Xia YP, An K, Huang CW, Cui WW, Wei S, Ji R, Xu F, Zhang HZ, Sun LX (2019) Fabrication and characterization of novel meso-porous carbon/n-octadecane as form-stable phase change materials for enhancement of phase-change behavior. J Mater Sci Technol 35:939–945

    Article  Google Scholar 

  24. Tang J, Yang M, Dong WJ, Yang M, Zhang H, Fan S, Wang J, Tan L, Wang G (2016) Highly porous carbons derived from MOFs for shape-stabilized phase change materials with high storage capacity and thermal conductivity. RSC Adv 6:40106–40114

    Article  CAS  Google Scholar 

  25. Chen Y, Zhu YY, Han Z, Chen D, Gao JK, Zhang ZJ, Zhang XJ, Lv MJ (2018) Preparation and Thermal Properties of Novel Shape-Stabilized Phase Change Materials Based on Polyethylene Glycol/Meso-Structured Onion-Like Silica Composite. Sci Adv Mater 10:331–337

    Article  CAS  Google Scholar 

  26. He F, Wang XD, Wu DZ (2015) Phase-change characteristics and thermal performance of form-stable n -alkanes/silica composite phase change materials fabricated by sodium silicate precursor. Renew Energ 74:689–698

    Article  CAS  Google Scholar 

  27. Mitran RA, Berger D, Matei C (2018). Curr Org Chem 22:2644

    Article  Google Scholar 

  28. Zhang L, Zhang P, Wang F, Kang M, Li RQ, Mou YR, Huang YH (2016) Phase change materials based on polyethylene glycol supported by graphene-based mesoporous silica sheets. Appl Therm Eng 101:217–223

    Article  CAS  Google Scholar 

  29. Zhang YZ, Zheng SL, Zhu SQ, Ma JN, Sun ZM, Farid M (2018) Evaluation of paraffin infiltrated in various porous silica matrices as shape-stabilized phase change materials for thermal energy storage. Energy Convers Manag 171:361–370

    Article  CAS  Google Scholar 

  30. Chen Y, Zhu Y, Wang J, Lv M, Zhang X, Gao J, Zhang Z, Lei H (2017) Novel Shape-Stabilized Phase Change Materials Composed of Polyethylene Glycol/Nonsurfactant-Templated Mesoporous Silica: Preparation and Thermal Properties. JOM 69:2774–2778

    Article  CAS  Google Scholar 

  31. Barreneche C, Fernandez AI, Niubo M, Chimenos JM, Espiell F, Segarra M, Sole C, Cabeza LF (2013) Development and characterization of new shape-stabilized phase change material (PCM)—Polymer including electrical arc furnace dust (EAFD), for acoustic and thermal comfort in buildings. Energy and Buildings 61:210–214

    Article  Google Scholar 

  32. Chalkia V, Tachos N, Pandis PK, Giannakas A, Koukou MK, Vrachopoulos MG, Coelho L, Ladavos A, Stathopoulos VN (2018) Influence of organic phase change materials on the physical and mechanical properties of HDPE and PP polymers. RSC Adv 8:27438–27447

    Article  CAS  Google Scholar 

  33. Liu LT, Wang HX, Qi XK, Kong L, Cui JP, Zhang XX, Shi HF (2015) Shape-stabilized phase change materials based on poly(ethylene-graft-maleic anhydride)-g-alkyl alcohol comb-like polymers. Sol Energy Mater Sol Cells 143:21–28

    Article  CAS  Google Scholar 

  34. Cai YB, Song XF, Liu MM, Li F, Xie MS, Cai DL, Wei QF (2017) Flexible cellulose acetate nano-felts absorbed with capric–myristic–stearic acid ternary eutectic mixture as form-stable phase-change materials for thermal energy storage/retrieval. J Therm Anal Calorim 128:661–673

    Article  CAS  Google Scholar 

  35. Guo CG, Miao Y, Li LP (2018) Synthesis and characterization of lauric acid/carboxymethyl cellulose ester and polylactic acid phase change material. J Renew Sustain Ener 10:064102

    Article  Google Scholar 

  36. Qu MJ, Guo CG, Li LP, Zhang XC (2017) Preparation and investigation on tetradecanol and myristic acid/cellulose form-stable phase change material. J Therm Anal Calorim 130:781–790

    Article  CAS  Google Scholar 

  37. Golestaneh SI, Mosallanejad A, Karimi G, Khorram M, Khashi M (2016) Fabrication and characterization of phase change material composite fibers with wide phase-transition temperature range by co-electrospinning method. Appl Energ 182:409–417

    Article  CAS  Google Scholar 

  38. Lu Y, Xiao XD, Fu J, Huan CM, Qi S, Zhan YJ, Zhu YQ, Xu G (2019) Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning. Chem Eng J 355:532–539

    Article  CAS  Google Scholar 

  39. L. Zhao, J. Luo, Y. Li, H. Wang, G. L. Song and G. Y. Tang, J Appl Polym Sci, 134 (2017)

  40. Alkan C, Sari A (2008) Fatty acid/poly(methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage. Sol Energy 82:118–124

    Article  CAS  Google Scholar 

  41. Pielichowski K (1999) Thermal energy storage systems based on poly(vinyl chloride) blends. Eur Polym J 35:27–34

    Article  CAS  Google Scholar 

  42. Pielichowski K, Flejtuch K (2005) Recent developments in polymeric phase change materials for energy storage: poly(ethylene oxide)/stearic acid blends. Polym Adv Technol 16:127–132

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project is funded by the National Natural Science Foundation of China (No. 51672227) and the Fundamental Research Funds for the Central Universities (No. 2682017CY08 and 2682017CX089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoming Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 30.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Wang, C., Wang, T. et al. Preparation and performances of form-stable polyethylene glycol/methylcellulose composite phase change materials. J Polym Res 27, 199 (2020). https://doi.org/10.1007/s10965-020-02150-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02150-0

Keywords

Navigation