Skip to main content

Advertisement

Log in

Curing, mechanical, thermomechanical and rheological properties of new poly(1-hexene-co-hexadiene) rubber

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polyolefin elastomers (POEs), a new family of synthetic commercialized polymers, can be used as an alternative for lots of common elastomers such as ethylene propylene rubbers (EPR or EPDM), poly (ethylene-co- vinyl acetate) (EVA) and poly (styrene-co-butadiene) (SBR). In this research, 1-hexene/1,5-hexadiene copolymer (COPOLY), as a newfound POE was cured with different weight fractions of dicumyl peroxide (DCP) as a curing agent. Curing behavior and ultimate properties of COPOLY were compared with EPDM as a nearby practical and commercial rubber. Mooney viscosity results showed that; by increasing weight fraction of curing agent, scorch times decreased, and the scorch time of COPOLY was lower than EPDM. Tensile measurements showed that COPOLY has comparable Young’s modulus with it in EPDM sample (16.11 and 16.51 MPa, respectively). DMTA analysis confirmed more toughness and elastomeric properties of COPOLY in comparison to EPDM rubber. Melt viscosity analysis of the samples exhibited that synthesized rubber has lower melt viscosity than EPDM at all frequency ranges, and also EPDM showed slightly higher elastic modulus in comparison to COPOLY (0.89 and 0.82 GPa, respectively). Fatigue test acknowledged excellent behavior of COPOLY with 45,600 cycles till to failure. The synthesized COPOLY showed significantly higher ozone resistance (142 toward 105 h) and lower abrasion weight loss (11.34 toward 14.28%) than commercial EPDM. Altogether, our obtained results suggest new highly efficient rubber that in all studied aspects has higher capability than EPDM and can be considered as a high performance rubber in industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nazari D, Bahri-Laleh N, Nekoomanesh-Haghighi M, Jalilian SM, Rezaie R, Mirmohammadi SA (2018) New high impact polystyrene: use of poly(1-hexene) and poly(1-hexene-co-hexadiene) as impact modifiers. Polym Adv Technol 29(6):1603–1612. https://doi.org/10.1002/pat.4265

    Article  CAS  Google Scholar 

  2. Ahmadjo S (2016) Preparation of ultra high molecular weight amorphous poly(1-hexene) by a Ziegler–Natta catalyst. Polym Adv Technol 27(11):1523–1529. https://doi.org/10.1002/pat.3828

    Article  CAS  Google Scholar 

  3. Hanifpour A, Bahri-Laleh N, Nekoomanesh-Haghighi M, Karimi M (2016) Study on unsaturated structure and tacticity of poly1-hexene and new copolymer of 1-hexene/5-hexene-1-ol prepared by metallocene catalyst. J Organomet Chem 819:103–108. https://doi.org/10.1016/j.jorganchem.2016.06.028

    Article  CAS  Google Scholar 

  4. Yan Y, Wang D, He S, Ren H, Xu Y (2019) Study on the synthesis of hexene-1 catalyzed by Ziegler-Natta catalyst and polyhexene-1 applications. E-polymers, vol 19. doi:https://doi.org/10.1515/epoly-2019-0054

  5. Nouri-Ahangarani F, Bahri-Laleh N, Nekoomanesh-Haghighi M, Karbalaie M (2016) Synthesis of highly isotactic poly 1-hexene using Fe-doped mg (OEt)2/TiCl4/ED Ziegler–Natta catalytic system. Des Monomers Polym 19(5):394–405. https://doi.org/10.1080/15685551.2016.1169373

    Article  CAS  Google Scholar 

  6. Pearce EM (1987) New commercial polymers 2. J Polym Sci C Polym Lett 25(5):233–234. https://doi.org/10.1002/pol.1987.140250509

    Article  Google Scholar 

  7. Rahmatiyan S, Bahri-Laleh N, Hanifpour A, Nekoomanesh-Haghighi M (2019) Different behaviors of metallocene and Ziegler–Natta catalysts in ethylene/1,5-hexadiene copolymerization. Polym Int 68(1):94–101. https://doi.org/10.1002/pi.5700

    Article  CAS  Google Scholar 

  8. Tai H-J (2005) Bubble size distribution and elastic retraction in Crosslinked Metallocene polyolefin elastomer foams. J Polym Res 12(6):457–464. https://doi.org/10.1007/s10965-005-3754-5

    Article  CAS  Google Scholar 

  9. Ghanbari A, Behzadfar E, Arjmand M (2019) Properties of talc filled reactor-made thermoplastic polyolefin composites. J Polym Res 26(10):241. https://doi.org/10.1007/s10965-019-1902-6

    Article  CAS  Google Scholar 

  10. Kaşgöz A, Akın D, Durmus A, Ercan N, Öksüzömer F, Kaşgöz A (2013) Effects of various polyolefin copolymers on the interfacial interaction, microstructure and physical properties of cyclic olefin copolymer (COC)/graphite composites. J Polym Res 20(7):194. https://doi.org/10.1007/s10965-013-0194-5

    Article  CAS  Google Scholar 

  11. Li P, Yin L, Song G, Sun J, Wang L, Wang H (2008) High-performance EPDM/organoclay nanocomposites by melt extrusion. Appl Clay Sci 40(1):38–44. https://doi.org/10.1016/j.clay.2007.07.002

    Article  CAS  Google Scholar 

  12. Fallah M, Bahri-Laleh N, Didehban K, Poater A (2020) Interaction of common cocatalysts in Ziegler–Natta-catalyzed olefin polymerization. Appl Organomet Chem 34(2):e5333. https://doi.org/10.1002/aoc.5333

    Article  CAS  Google Scholar 

  13. Shamiri A, Chakrabarti MH, Jahan S, Hussain MA, Kaminsky W, Aravind PV, Yehye WA (2014) The influence of Ziegler-Natta and Metallocene catalysts on polyolefin structure, properties, and processing ability. Materials 7(7):5069–5108. https://doi.org/10.3390/ma7075069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jose S, Thomas S, Biju PK, Karger-Kocsis J (2013) Mechanical and dynamic mechanical properties of polyolefin blends: effect of blend ratio and copolymer monomer fraction on the compatibilisation efficiency of random copolymers. J Polym Res 20(12):303. https://doi.org/10.1007/s10965-013-0303-5

    Article  CAS  Google Scholar 

  15. Gomari S, Ghasemi I, Karrabi M, Azizi H (2011) Organoclay localization in polyamide 6/ethylene-butene copolymer grafted maleic anhydride blends: the effect of different types of organoclay. J Polym Res 19(1):9769. https://doi.org/10.1007/s10965-011-9769-1

    Article  Google Scholar 

  16. Wang B, Hao L, Wang W, Hu G (2010) One-step compatibilization of polyamide 6/ poly (ethylene-1-octene) blends with maleic anhydride and peroxide. J Polym Res 17(6):821–826. https://doi.org/10.1007/s10965-009-9373-9

    Article  CAS  Google Scholar 

  17. Datta S, Sahnoune A (2019) Meso-propylene-co-ethylene polyolefin rubber: vulcanization and comparison to amorphous Steroisomer rubber. Rubb Chem Technol 92(1):43–50. https://doi.org/10.5254/rct.18.81527

    Article  CAS  Google Scholar 

  18. Bahri-Laleh N, Hanifpour A, Mirmohammadi SA, Poater A, Nekoomanesh-Haghighi M, Talarico G, Cavallo L (2018) Computational modeling of heterogeneous Ziegler-Natta catalysts for olefins polymerization. Prog Polym Sci 84:89–114. https://doi.org/10.1016/j.progpolymsci.2018.06.005

    Article  CAS  Google Scholar 

  19. S-h Y, Winters M, Siviour CR (2016) High strain-rate tensile characterization of EPDM rubber using non-equilibrium loading and the virtual fields method. Exp Mech 56(1):25–35. https://doi.org/10.1007/s11340-015-0068-3

    Article  CAS  Google Scholar 

  20. Mat NSC, Ismail H, Othman N (2016) Curing characteristics and tear properties of Bentonite filled ethylene propylene Diene (EPDM) rubber composites. Procedia Chem 19:394–400. https://doi.org/10.1016/j.proche.2016.03.029

    Article  CAS  Google Scholar 

  21. Ismail H, Che Mat NS, Othman N (2018) Curing characteristics, tear, fatigue, and aging properties of bentonite-filled ethylene-propylene-diene (EPDM) rubber composites. J Vinyl Addit Techn 24(S1):E77–E84. https://doi.org/10.1002/vnl.21591

    Article  CAS  Google Scholar 

  22. Saleesung T, Reichert D, Saalwächter K, Sirisinha C (2015) Correlation of crosslink densities using solid state NMR and conventional techniques in peroxide-crosslinked EPDM rubber. Polymer 56:309–317. https://doi.org/10.1016/j.polymer.2014.10.057

    Article  CAS  Google Scholar 

  23. Liu J, Yu W, Zhou W, Zhou C (2009) Control on the topological structure of polyolefin elastomer by reactive processing. Polymer 50(2):547–552. https://doi.org/10.1016/j.polymer.2008.11.030

    Article  CAS  Google Scholar 

  24. Mirmohammadi SA, Nekoomanesh-Haghighi M, Mohammadian Gezaz S, Bahri-Laleh N, Atai M (2016) In-situ photocrosslinkable nanohybrid elastomer based on polybutadiene/polyhedral oligomeric silsesquioxane. Mater Sci Eng C 68:530–539. https://doi.org/10.1016/j.msec.2016.06.027

    Article  CAS  Google Scholar 

  25. Mirmohammadi S, Imani M, Uyama H, Atai M (2013) In situ photocrosslinkable nanohybrids based on poly(E-caprolactone fumarate)/polyhedral oligomeric silsesquioxane: synthesis and characterization. J Polym Res 20(12):1–13. https://doi.org/10.1007/s10965-013-0297-z

    Article  CAS  Google Scholar 

  26. Ismail H, Leong HC (2001) Curing characteristics and mechanical properties of natural rubber/chloroprene rubber and epoxidized natural rubber/chloroprene rubber blends. Polym Test 20(5):509–516. https://doi.org/10.1016/S0142-9418(00)00067-2

    Article  CAS  Google Scholar 

  27. Poh BT, Tan BK (1991) Mooney scorch time of epoxidized natural rubber. J Appl Polym Sci 42(5):1407–1416. https://doi.org/10.1002/app.1991.070420525

    Article  CAS  Google Scholar 

  28. Ruksakulpiwat Y, Sridee J, Suppakarn N, Sutapun W (2009) Improvement of impact property of natural fiber–polypropylene composite by using natural rubber and EPDM rubber. Compos Part B Eng 40(7):619–622. https://doi.org/10.1016/j.compositesb.2009.04.006

    Article  CAS  Google Scholar 

  29. Faez R, De Paoli M-A (2001) A conductive rubber based on EPDM and polyaniline: I. doping method effect. Eur Polym J 37(6):1139–1143. https://doi.org/10.1016/S0014-3057(00)00235-4

    Article  CAS  Google Scholar 

  30. Hanifpour A, Bahri-Laleh N, Mirmohammadi SA (2019) Silica-grafted poly1-hexene: a new approach to prepare polyethylene/silica nanocomposites. Polym Compos 40(3):1053–1060. https://doi.org/10.1002/pc.24795

    Article  CAS  Google Scholar 

  31. Hanifpour A, Bahri-Laleh N, Nekoomanesh-Haghighi M, Mirmohammadi SA (2016) Poly1-hexene: new impact modifier in HIPS technology. J Appl Polym Sci 133(35):8508. https://doi.org/10.1002/app.43882

    Article  CAS  Google Scholar 

  32. Dorigato A, Brugnara M, Pegoretti A (2018) Synergistic effects of carbon black and carbon nanotubes on the electrical resistivity of poly (butylene-terephthalate) nanocomposites. Adv Polym Technol 37(6):1744–1754. https://doi.org/10.1002/adv.21833

    Article  CAS  Google Scholar 

  33. Ismail H, Anuar H, Tsukahara Y (1999) Effects of palm oil fatty acid on curing characteristics, reversion and fatigue life of various natural rubber compounds. Polym Int 48(7):607–613. https://doi.org/10.1002/(sici)1097-0126(199907)48:7<607::aid-pi176>3.0.co;2-l

    Article  CAS  Google Scholar 

  34. Tangudom P, Thongsang S, Sombatsompop N (2014) Cure and mechanical properties and abrasive wear behavior of natural rubber, styrene–butadiene rubber and their blends reinforced with silica hybrid fillers. Mater Des 53:856–864. https://doi.org/10.1016/j.matdes.2013.07.024

    Article  CAS  Google Scholar 

  35. Sohn MS, Kim KS, Hong SH, Kim JK (2003) Dynamic mechanical properties of particle-reinforced EPDM composites. J Appl Polym Sci 87(10):1595–1601. https://doi.org/10.1002/app.11577

    Article  CAS  Google Scholar 

  36. Ayatollahi MR, Heydari-Meybodi M, Berto F, Yahya MY (2019) Mixed-mode fracture in EPDM/SBR/nanoclay rubber composites: an experimental and theoretical investigation. Compos Part B Eng 176:107312. https://doi.org/10.1016/j.compositesb.2019.107312

    Article  CAS  Google Scholar 

  37. Özdemir T (2008) Gamma irradiation degradation/modification of 5-ethylidene 2-norbornene (ENB)-based ethylene propylene diene rubber (EPDM) depending on ENB content of EPDM and type/content of peroxides used in vulcanization. Radiat Phys Chem 77(6):787–793. https://doi.org/10.1016/j.radphyschem.2007.12.010

    Article  CAS  Google Scholar 

  38. da Costa HM, Ramos VD (2008) Analysis of thermal properties and rheological behavior of LLDPE/EPDM and LLDPE/EPDM/SRT mixtures. Polym Test 27(1):27–34. https://doi.org/10.1016/j.polymertesting.2007.08.001

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Amin Mirmohammadi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazari, D., Bahri-Laleh, N., Hanifpour, A. et al. Curing, mechanical, thermomechanical and rheological properties of new poly(1-hexene-co-hexadiene) rubber. J Polym Res 27, 126 (2020). https://doi.org/10.1007/s10965-020-02126-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02126-0

Keywords

Navigation