Skip to main content

Advertisement

Log in

Synthesis of TiO2@lignin based carbon nanofibers composite materials with highly efficient photocatalytic to methylene blue dye

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The hydrophobic TiO2/lignin based carbon nanofibers (TiO2@CFs) composite with high photocatalytic efficiency and excellent cycle performance is successfully prepared by the method of electrospinning and thermo-treatment. The results of FTIR, SEM and EDS analyses show that the TiO2 nano-particles are uniformly and firmly coated on the surface of CFs. Due to good hydrophobicity and high electrical conductivity of CFs, such unique properties endow TiO2@CFs composites with enhanced light energy utilization efficiency and photocatalytic efficiency because of their floatability on the solution, high adsorptive capacity of MB, and low recombination of photo-generated electrons and holes. Compared with the commercial TiO2 powder, the degradation rate toward MB of TiO2@CFs is improved about 2.62 and 3.02 times at 30 and 15 min, respectively, under static state and xenon lamp irradiation. The degradation rate of TiO2@CFs toward MB reaches 62.77% within 15 min under static state, and further increase to 87.28% after 30 min. In addition, the removal rate of MB can be obtained up to 91.5% even after four cycles at a stirring speed of 200 RPM. Therefore, these unique material structures make it become a promising photocatalytic material.

The TiO2/lignin lased carbon nanofibers composite with excellent photocatalytic performance, reusability and durability was prepared from a green and low-cost biomass materials of lignin by using the simple method of electrospining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nasrullah A, Khan H, Khan AS, Man Z, Muhammad N, Khan MI, El-Salam NMA (2015) Potential biosorbent derived from Calligonum polygonoides for removal of methylene blue dye from aqueous solution. Sci World J 2015:1–11

    Google Scholar 

  2. Martino EA, Winterton D, Nardelli P, Pasin L, Calabro MG, Bove T, Fanelli G, Zangrillo A, Landoni G (2016) The blue coma: the role of methylene blue in unexplained coma after cardiac surgery. J Cardiothorac Vasc Anesth 30:423–427

    CAS  PubMed  Google Scholar 

  3. Betancourt-Buitrago LA, Vasquez C, Veitia L, Ossa-Echeverry O, Rodriguez-Vallejo J, Barraza-Burgos J, Marriaga-Cabrales N, Machuca-Martinez F (2017) An approach to utilize the artificial high power LED UV-A radiation in photoreactors for the degradation of methylene blue. Photochem Photobiol Sci 16:79–85

    CAS  PubMed  Google Scholar 

  4. Houas HLA, Ksibi M, Elaloui E, Guillard C, Herrmann J (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal B Environ 31:145–157

    CAS  Google Scholar 

  5. Tang B, Chen H, He Y, Wang Z, Zhang J, Wang J (2017) Influence from defects of three-dimensional graphene network on photocatalytic performance of composite photocatalyst. Compos Sci Technol 150:54–64

    CAS  Google Scholar 

  6. Prathap A, Sureshan KM (2017) Organogelator-cellulose composite for practical and eco-friendly marine oil spill recovery. Angew Chem Int Ed 56:9045–9049

    Google Scholar 

  7. Dong Y, Lin H, Jin Q, Li L, Wang D, Zhou D, Qu F (2013) Synthesis of mesoporous carbon fibers with a high adsorption capacity for bulky dye molecules. J Mater Chem A 1:7391–7398

    CAS  Google Scholar 

  8. Beck RJ, Zhao Y, Fong H, Menkhaus TJ (2017) Electrospun lignin carbon nanofiber membranes with large pores for highly efficient adsorptive water treatment applications. J Water Process Eng 16:240–248

    Google Scholar 

  9. Jiao Y, Wan C, Li J (2016) Synthesis of carbon fiber aerogel from natural bamboo fiber and its application as a green high-efficiency and recyclable adsorbent. Mater Des 107:26–32

    CAS  Google Scholar 

  10. Collins MN, Nechifor M, Tanasa F, Zanoaga M, McLoughlin A, Strozyk MA, Culebras M, Teaca CA (2019) Valorization of lignin in polymer and composite systems for advanced engineering applications - a review. Int J Biol Macromol 131:828–849

    CAS  PubMed  Google Scholar 

  11. Dai Z, Shi XJ, Liu H, Li HM, Han Y, Zhou JH (2018) High-strength lignin-based carbon fibers via a low-energy method. RSC Adv 8:1218–1224

    CAS  Google Scholar 

  12. Kai D, Tan MJ, Chee PL, Chua YK, Yap YL, Loh XJ (2016) Towards lignin-based functional materials in a sustainable world. Green Chem 18:1175–1200

    CAS  Google Scholar 

  13. Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847

    CAS  PubMed  Google Scholar 

  14. Sharma S, Dutta V, Singh P, Raizada P, Rahmani-Sani A, Hosseini-Bandegharaei A, Thakur VK (2019) Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: a review. J Clean Prod 228:755–769

    CAS  Google Scholar 

  15. Heitmann AP, Rocha IC, Pereira IM, Oliveira LCA, Patrício PSO (2019) Nanoparticles of niobium oxyhydroxide incorporated in different polymers for photocatalytic degradation of dye. J Polym Res 26:159

    Google Scholar 

  16. Ossoss KM, Hassan MER, Al-Hussaini AS (2019) Novel Fe2O3@PANI-o-PDA core-shell nanocomposites for photocatalytic degradation of aromatic dyes. J Polym Res 26:199

    Google Scholar 

  17. Regonini D, Bowen CR, Jaroenworaluck A, Stevens R (2013) A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater Sci Eng R 74:377–406

    Google Scholar 

  18. Xing Z, Zhang J, Cui J, Yin J, Zhao T, Kuang J, Xiu Z, Wan N, Zhou W (2018) Recent advances in floating TiO2-based photocatalysts for environmental application. Appl Catal B Environ 225:452–467

    CAS  Google Scholar 

  19. Zhao Y, Wang Y, Xiao G, Su H (2019) Fabrication of biomaterial/TiO2 composite photocatalysts for the selective removal of trace environmental pollutants. Chin J Chem Eng 6:1416–1428

    Google Scholar 

  20. Khalid NR, Majid A, Tahir MB, Niaz NA, Khalid S (2017) Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: a review. Ceram Int 43:14552–14571

    CAS  Google Scholar 

  21. UDDIN MJ, CESANO F, Scarano D, Bonino F, Agostini G, Spoto G, Bordiga S, Zecchina A (2008) Cotton textile fibres coated by Au/TiO2 films : synthesis, characterization and self cleaning properties. J Photochem Photobiol A 199:64–72

    CAS  Google Scholar 

  22. Zhang J, Zhang Y, Lei Y, Pan C (2011) Photocatalytic and degradation mechanisms of anatase TiO2: a HRTEM study. Catal Sci Technol 1:273–278

    CAS  Google Scholar 

  23. Augugliaro V, Bellardita M, Loddo V, Palmisano G, Palmisano L, Yurdakal S (2012) Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis. J Photochem Photobiol C 13:224–245

    CAS  Google Scholar 

  24. Sánchez-Rodríguez D, Mendez Medrano MG, Remita H, Escobar-Barrios V (2018) Photocatalytic properties of BiOCl-TiO2 composites for phenol photodegradation. J Environ Chem Eng 6:1601–1612

    Google Scholar 

  25. Justh N, Mikula GJ, Bakos LP, Nagy B, Laszlo K, Parditka B, Erdelyi Z, Takáts V, Mizsei J, Szilagyi IM (2019) Photocatalytic properties of TiO2@polymer and TiO2@carbon aerogel composites prepared by atomic layer deposition. Carbon 147:476–482

    CAS  Google Scholar 

  26. Ortelli S, Blosi M, Albonetti S, Vaccari A, Dondi M, Costa AL (2014) TiO2, based nano-photocatalysis immobilized on cellulose substrates. J Photochem Photobiol A 176:58–64

    Google Scholar 

  27. Noreen Z, Khalid NR, Abbasi R, Javed S, Ahmad I, Bokhari H (2019) Visible light sensitive Ag/TiO2/graphene composite as a potential coating material for control of campylobacter jejuni. Mater Sci Eng C-Mater 98:125–133

    CAS  Google Scholar 

  28. Jayaraman J, Pavadai N, Venugopal T, Ramaiyan R (2019) Interfacial charge-transfer in Cu-TiO2-HBDPPIN-Ag film and AIEE-active chemosensor. J Photochem Photobiol A 377:318–338

    CAS  Google Scholar 

  29. Sanzone G, Zimbone M, Cacciato G, Ruffino F, Carles R, Privitera V, Grimaldi MG (2018) Ag/TiO2 nanocomposite for visible light-driven photocatalysis. Superlattice Microst 123:394–402

    CAS  Google Scholar 

  30. Natarajan S, Lakshmi DS, Thiagarajan V, Mrudula P, Chandrasekaran N, Mukherjee A (2018) Antifouling and anti-algal effects of chitosan nanocomposite (TiO2/Ag) and pristine (TiO2 and Ag) films on marine microalgae Dunaliella salina. J Environ Chem Eng 6:6870–6880

    CAS  Google Scholar 

  31. Kusiak-Nejman E, Morawski AW (2019) TiO2/graphene-based nanocomposites for water treatment: a brief overview of charge carrier transfer, antimicrobial and photocatalytic performance. Appl Catal B Environ 253:179–186

    CAS  Google Scholar 

  32. Wang T, Tang T, Gao Y, Chen Q, Zhang Z, Bian H (2019) Hydrothermal preparation of Ag-TiO2-reduced graphene oxide ternary microspheres structure composite for enhancing photocatalytic activity. Phys E 112:128–136

    CAS  Google Scholar 

  33. Sohail M, Xue H, Jiao Q, Li H, Khan K, Wang S, Feng C, Zhao Y (2018) Synthesis of well-dispersed TiO2/CNTs@CoFe2O4 nanocomposites and their photocatalytic properties. Mater Res Bull 101:83–89

    CAS  Google Scholar 

  34. Liu X, Wang J, Dong Y, Li H, Xia Y, Wang H (2018) One-step synthesis of Bi2MoO6/reduced graphene oxide aerogel composite with enhanced adsorption and photocatalytic degradation performance for methylene blue. Mater Sci Semicond Process 88:214–223

    CAS  Google Scholar 

  35. Djokic VR, Marinkovic AD, Ersen O, Uskokovic PS, Petrovic RD, Radmilovic VR, Janackovic DT (2014) The dependence of the photocatalytic activity of TiO2/carbon nanotubes nanocomposites on the modification of the carbon nanotubes. Ceram Int 40:4009–4018

    CAS  Google Scholar 

  36. Jiang F, Yu Y, Feng A, Song L (2018) Effects of ammonia on graphene preparation via microwave assisted intercalation exfoliation method. Ceram Int 44:12763–12766

    CAS  Google Scholar 

  37. Torrisi L, Cutroneo M, Havranek V, Silipigni L, Fazio B, Fazio M, Di Marco G, Stassi A, Torrisi A (2019) Self-supporting graphene oxide films preparation and characterization methods. Vacuum 160:1–11

    CAS  Google Scholar 

  38. Eltayeb NE, Khan A (2019) Design and preparation of a new and novel Nanocomposite with CNTs and its sensor applications. J Mater Res Technol 8:2238–2246

    CAS  Google Scholar 

  39. Yang X, Ma J, Ling J, Li N, Wang D, Yue F, Xu S (2018) Cellulose acetate-based SiO2/TiO2 hybrid microsphere composite aerogel films for water-in-oil emulsion separation. Appl Surf Sci 435:609–616

    CAS  Google Scholar 

  40. Ng HKM, Leo CP (2019) The coherence between TiO2 nanoparticles and microfibrillated cellulose in thin film for enhanced dispersal and photodegradation of dye. Prog Org Coat 132:70–75

    CAS  Google Scholar 

  41. Jung SM, Grange P (2004) Characterization of the surface hydroxyl properties of sepiolite and Ti(OH)4 and investigation of new properties generated over physical mixture of Ti(OH)4–sepiolite. Appl Surf Sci 221:167–177

    CAS  Google Scholar 

  42. Ren W, Pan X, Wang G, Cheng W, Liu Y (2016) Dodecylated lignin-g-PLA for effective toughening of PLA. Green Chem 18:5008–5014

    CAS  Google Scholar 

  43. Akkoz Y, Coskun R, Delibas A (2019) Preparation and characterization of sulphonated bio-adsorbent from waste hawthorn kernel for dye (MB) removal. J Mol Liq 287:110988

    CAS  Google Scholar 

  44. Ahamad T, Naushad M, Eldesoky GE, Al-Saeedi SI, Nafady A, Al-Kadhi NS, Al-Muhtaseb AAH, Khan AA, Khan A (2019) Effective and fast adsorptive removal of toxic cationic dye (MB) from aqueous medium using amino-functionalized magnetic multiwall carbon nanotubes. J Mol Liq 282:154–161

    CAS  Google Scholar 

  45. Huang L, Key J, Shen PK (2019) Boosting the volumetric energy of supercapacitors using polytetrafluoroethylene pyrolysis gas. J Power Sources 414:76–85

    CAS  Google Scholar 

  46. Devikala S, Kamaraj P, Arthanareeswari M (2018) A.C. conductivity studies of PMMA/TiO2 composites. Mater Today Proc 5:8678–8682

    CAS  Google Scholar 

  47. Suphankij S, Mekprasart W, Pecharapa W (2013) Photocatalytic of N-doped TiO2 Nanofibers prepared by electrospinning. Energy Procedia 34:751–756

    CAS  Google Scholar 

  48. Zhu C, Fu Y, Liu C, Liu Y, Hu L, Liu J, Bello I, Li H, Liu N, Guo S, Huang H, Lifshitz Y, Lee ST, Kang Z (2017) Carbon dots as fillers inducing healing/self-healing and anticorrosion properties in polymers. Adv Mater 29:1701399

    Google Scholar 

  49. Yin ZW, Betzler SB, Sheng T, Zhang Q, Peng X, Shangguan J, Bustillo KC, Li JT, Sun SG, Zheng H (2019) Visualization of facet-dependent pseudo-photocatalytic behavior of TiO2 nanorods for water splitting using in situ liquid cell TEM. Nano Energy 62:507–512

    CAS  Google Scholar 

  50. Tho NT, Mai NTT, Van NT, Phat BD, Hieu LV, Thi CM, Viet PV (2019) Direct synthesis of reduced graphene oxide/TiO2 nanotubes composite from graphite oxide as a high-efficiency Visible-light-driven photocatalyst. J Nanosci Nanotechnol 19:5195–5204

    PubMed  Google Scholar 

  51. Sim LC, Leong KH, Ibrahim S, Saravanan P (2014) Graphene oxide and Ag engulfed TiO2 nanotube arrays for enhanced electron mobility and visible-light-driven photocatalytic performance. J Mater Chem A 2:5315–5322

    CAS  Google Scholar 

  52. Nguyen-Phan TD, Pham VH, Shin EW, Pham HD, Kim S, Chung JS, Kim EJ, Hur SH (2011) The role of grapheme oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chem Eng J 170:226–232

    CAS  Google Scholar 

  53. Kim SP, Choi HC (2014) Photocatalytic degradation of methylene blue in presence of graphene oxide/TiO2 nanocomposites. Bull Kor Chem Soc 35:2660–2664

    CAS  Google Scholar 

  54. Lee JS, You KH, Park CB (2012) Highly photoactive, low bandgap TiO2 nanoparticles wrapped by grapheme. Adv Mater 24:1084–1088

    CAS  PubMed  Google Scholar 

  55. Zhang H, Lv X, Li Y, Wang Y, Li J (2010) P25-graphene composite as a high performance photocatalyst. ACS Nano 4:380–386

    CAS  PubMed  Google Scholar 

  56. Guo J, Zhu S, Chen Z, Li Y, Yu Z, Liu Q, Li J, Feng C, Zhang D (2011) Sonochemical synthesis of TiO2 nanoparticles on graphene for use as photocatalyst. Ultrason Sonochem 18:1082–1090

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51773167, 21706208 and 51573147); the Natural Science Foundation of Shaanxi Province (2018JM5036); the Science and technology plan of Xi’an (2019217814GXRC014CG015-GxyD14.7).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Penggang Ren or Yanling Jin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Electrospining is a promising method for photocatalyst composite synthesis

• CFs would efficiently enhance the photocatalytic efficiency of photocatalysts

• The floating TiO2@CFs composite greatly improve the utilization of light energy

• The tightly combination of TiO2 and CFs increase the durability of photocatalysts.

Electronic supplementary material

ESM 1

(DOCX 8714 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Z., Ren, P., Cao, Q. et al. Synthesis of TiO2@lignin based carbon nanofibers composite materials with highly efficient photocatalytic to methylene blue dye. J Polym Res 27, 108 (2020). https://doi.org/10.1007/s10965-020-02068-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02068-7

Keywords

Navigation