Skip to main content

Advertisement

Log in

An overview of controlled-biocide-release coating based on polymer resin for marine antifouling applications

  • Review Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Biofouling is one of the major worldwide problems associated with the vessel due to its accumulation with the surface of the ship hull. The biofouling is the main origin of the coating’s deterioration that ultimately leads to bio-corrosion, roughness and drag, resulting in an enormous increase in the fuel consumption. Although Tributyltin (TBT) has been used as a pioneer class of antifoulant to overcome this problem, however, after the legal restriction on TBT, some biocides have been used as its alternatives. These biocides are potentially harmful to the environment due to the higher release rate in the aquatic environment. This review paper focuses on the progress made in eco-friendly antifouling coating techniques, using control biocide release principal for marine application. The three main strategies, hydrophilic, hydrophobic, and biodegradable antifouling coating, are reviewed. Biodegradable antifouling coating is a new promising route based on the combination of eco-friendly biocide with dynamic surfaces by utilizing degradable polyurethane, polyester acrylate, and modified polyester based polymers. They are used as a carrier of antifoulant, which control the release rate and also show excellent antifouling activity in the marine coatings due to tunability, sustainability, and mechanical performance, therefore, they have a longer shelf period. Moreover, this review focuses on the challenges associated with vessel surface coating and their possible solutions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Krishnan S, Weinman CJ, Ober CK (2008) Advances in polymers for anti-biofouling surfaces. J Mater Chem 18:3405

    CAS  Google Scholar 

  2. Chambers LD, Stokes KR, Walsh FC, Wood RJK (2006) Modern approaches to marine antifouling coatings. Surf Coatings Technol 201:3642–3652

    CAS  Google Scholar 

  3. Demirel YK, Khorasanchi M, Turan O, Incecik A (2013) On the importance of antifouling coatings regarding ship resistance and powering. Low Carbon Shipp Conf 44:1–13

    Google Scholar 

  4. Schultz MP, Bendick JA, Holm ER, Hertel WM (2011) Economic impact of biofouling on a naval surface ship. Biofouling 27:87–98

    CAS  PubMed  Google Scholar 

  5. Wei C, Zhang G, Zhang Q, Zhan X, Chen F (2016) Silicone oil-infused slippery surfaces based on sol-gel process-induced Nanocomposite coatings: a facile approach to highly stable bioinspired surface for biofouling resistance. ACS Appl Mater Interfaces 8:34810–34819

    CAS  PubMed  Google Scholar 

  6. Jiang J, Zhu J, Zhang Q, Zhan X, Chen F (2019) A shape recovery Zwitterionic bacterial cellulose aerogel with superior performances for water remediation. Langmuir 35:11959–11967

    CAS  PubMed  Google Scholar 

  7. Fu Y, Jiang J, Zhang Q et al (2017) Correction: robust liquid-repellent coatings based on polymer nanoparticles with excellent self-cleaning and antibacterial performances. J Mater Chem A 5:1313–1313

    CAS  Google Scholar 

  8. Ba M, Zhang Z, Qi Y (2017) The dispersion tolerance of micro / Nano particle in Polydimethylsiloxane and its influence on the properties of fouling release coatings based on Polydimethylsiloxane. Coatings 7:107. https://doi.org/10.3390/coatings7070107

    Article  CAS  Google Scholar 

  9. Miao BA, ZHANG, Zhan-ping QY (2017) Research Progress of silicone antifouling paints. Surf Technol 46:1–8

    Google Scholar 

  10. Lotz BA, Group TC (2016) Marine Coatings : Making Sense of U . S ., State , and Local Mandates of Copper-Based Antifouling Regulations. 50–54

  11. Chen X, Zhang G, Zhang Q et al (2015) Preparation and performance of amphiphilic polyurethane copolymers with capsaicin-mimic and PEG moieties for protein resistance and antibacteria. Ind Eng Chem Res 54:3813–3820

    CAS  Google Scholar 

  12. Kiil S, Dam-Johansen K, Weinell CE et al (2002) Dynamic simulations of a self-polishing antifouling paint exposed to seawater. J Coatings Technol 74:45–54

    CAS  Google Scholar 

  13. Almeida E, Diamantino TC, de Sousa O (2007) Marine paints: the particular case of antifouling paints. Prog Org Coatings 59:2–20

    CAS  Google Scholar 

  14. Alzieu C (2000) Environmental impact of TBT : the French experience. Sci Total Environ 258:99–102

    CAS  PubMed  Google Scholar 

  15. Kotrikla A (2009) Environmental management aspects for TBT antifouling wastes from the shipyards. J Environ Manag 90:77–85

    Google Scholar 

  16. Cologer PCC (1991) Fouling control of navy surface ships. Nav Eng J 103:114–115

    Google Scholar 

  17. Almond KM, Trombetta LD (2017) Copper pyrithione , a booster biocide , induces abnormal muscle and notochord architecture in zebra fish embryogenesis. Ecotoxicology 26:1–13

    Google Scholar 

  18. Soroldoni S, Martins SE, Castro IB, Pinho GLL (2018) Potential ecotoxicity of metals leached from antifouling paint particles under different salinities. Ecotoxicol Environ Saf 148:447–452

    CAS  PubMed  Google Scholar 

  19. Soroldoni S, Abreu F, Castro ÍB, Duarte FA, Pinho GL (2017) Are antifouling paint particles a continuous source of toxic chemicals to the marine environment? J Hazard Mater 330:76–82

    CAS  PubMed  Google Scholar 

  20. Wan F, Pei X, Yu B et al (2012) Grafting polymer brushes on biomimetic structural surfaces for anti- algae fouling and foul release. ACS Appl Mater Interfaces 2:4557–4565

    Google Scholar 

  21. Zhang Y, Wan Y, Shi Y et al (2016) Facile modification of thin-film composite nanofiltration membrane with silver nanoparticles for anti-biofouling. J Polym Res 23:1–9

    Google Scholar 

  22. Nurioglu AG, Esteves a CC, De WG (2015) Coatings based on molecular structure Design for Marine Applications. J Mater Chem B 3:6547–6570

    CAS  PubMed  Google Scholar 

  23. Shan CAO, Jiadao W, Haosheng C, Darong C (2011) Progress of marine biofouling and antifouling technologies. Chin Sci Bull 56:598–612

    Google Scholar 

  24. Quigg A, Chin W, Chen C et al (2013) Direct and indirect toxic effects of engineered nanoparticles on algae: role of natural organic matter. ACS Sustain Chem Eng 1:686–702

    CAS  Google Scholar 

  25. Jin B, Zhang G, Lian J et al (2019) Boron nitride nanosheet embedded bio-inspired wet adhesives with switchable adhesion and oxidation resistance. J Mater Chem A 7:12266–12275

    CAS  Google Scholar 

  26. Mallakpour S, Khadem E (2015) Recent development in the synthesis of polymer nanocomposites based on nano-alumina. Prog Polym Sci 51:74–93

    CAS  Google Scholar 

  27. Enayatzadeh M, Mohammadi T, Fallah N (2019) Influence of TiO2 nanoparticles loading on permeability and antifouling properties of nanocomposite polymeric membranes: experimental and statistical analysis. J Polym Res 26:11–22

    Google Scholar 

  28. Chen K, Zhou S, Wu L (2015) Self-healing underwater Superoleophobic and anti-biofouling coatings based on the assembly of hierarchical microgel spheres. ACS Nano 10:1386–1394

    PubMed  Google Scholar 

  29. Mujeeb Rahman P, Abdul Mujeeb VM, Muraleedharan K, Thomas SK (2018) Chitosan/nano ZnO composite films: enhanced mechanical, antimicrobial and dielectric properties. Arab J Chem 11:120–127

    CAS  Google Scholar 

  30. Tamayo L, Azócar M, Kogan M, Riveros A, Páez M (2016) Copper-polymer nanocomposites: an excellent and cost-effective biocide for use on antibacterial surfaces. Mater Sci Eng C 69:1391–1409

    CAS  Google Scholar 

  31. Ciriminna R, Bright FV, Pagliaro M (2015) Ecofriendly antifouling marine coatings. ACS Sustain Chem Eng 3:559–565

    CAS  Google Scholar 

  32. Harder P-YQ, CKL-UDD S (2007) Marine biofilms as mediators of colonization by marine macroorganisms: implications for antifouling and aquaculture. Mar Biotechnol 9:399–410

    PubMed  Google Scholar 

  33. Ding W, Ma C, Zhang W, Chiang H, Tam C, Xu Y, Zhang G, Qian PY (2018) Anti-biofilm effect of a butenolide/polymer coating and metatranscriptomic analyses. Biofouling 34:111–122

    CAS  PubMed  Google Scholar 

  34. Faÿ F, Linossier I, Peron JJ et al (2007) Antifouling activity of marine paints: study of erosion. Prog Org Coatings 60:194–206

    Google Scholar 

  35. Luckachan GE, Pillai CKS (2011) Biodegradable polymers- a review on recent trends and emerging perspectives. J Polym Environ 19:637–676

    CAS  Google Scholar 

  36. Dobretsov S, Dahms HU, Qian PY (2006) Inhibition of biofouling by marine microorganisms and their metabolites. Biofouling 22:43–54

    CAS  PubMed  Google Scholar 

  37. Cusick KD, Dale JR, Fitzgerald LA et al (2017) Adaptation to copper stress influences biofilm formation in Alteromonas macleodii. Biofouling 7014:1–15

    Google Scholar 

  38. Chen Y, Liu Z, Han S et al (2016) Poly(propylene carbonate) polyurethane self-polishing coating for marine antifouling application. J Appl Polym Sci 133:1–9

    Google Scholar 

  39. Yi J, Yi J, Ren R, Huang C (2015) Synthesis and characterization of degradable polyurethane based on poly ( ether ester ) polyols ( PPG-2000 and e -caprolactone / lactic acid ) for marine antifouling. J Coatings Technol Res 12:525–532

    CAS  Google Scholar 

  40. Xie Q, Pan J, Ma C, Zhang G (2019) Dynamic surface antifouling: mechanism and systems. Soft Matter 15:1087–1107

    CAS  PubMed  Google Scholar 

  41. Thompson SEM, Coates JC (2017) Surface sensing and stress-signalling in Ulva and fouling diatoms–potential targets for antifouling: a review. Biofouling 33:410–432

    PubMed  Google Scholar 

  42. Finlay JA (2006) The influence of surface wettability on the adhesion strength of settled spores of the green alga Enteromorpha and the diatom amphora. Integr Comp Biol 42:1116–1122

    Google Scholar 

  43. Frey M, Simard N, Robichaud D et al (2014) Fouling around: vessel sea-chests as a vector for the introduction and spread of aquatic invasive species. Manag Biol Invasions 5:21–30

    Google Scholar 

  44. Korkut E, Atlar M (2012) An experimental investigation of the effect of foul release coating application on performance, noise and cavitation characteristics of marine propellers. Ocean Eng 41:1–12

    Google Scholar 

  45. Lindholdt A, Dam-Johansen K, Olsen SM et al (2015) Effects of biofouling development on drag forces of hull coatings for ocean-going ships: a review. J Coatings Technol Res 12:415–444

    CAS  Google Scholar 

  46. Railkin AI (2004) Marine biofouling: colonization processes and defenses. CRC Press Taylor Fr Gr Boca Raton, Florida 3:320

  47. Matranga V, Corsi I (2012) Toxic effects of engineered nanoparticles in the marine environment : model organisms and molecular approaches. Mar Environ Res 76:32–40

    CAS  PubMed  Google Scholar 

  48. Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209

    CAS  PubMed  Google Scholar 

  49. Salta M, Wharton JA, Blache Y, Stokes KR, Briand JF (2013) Marine biofilms on artificial surfaces: structure and dynamics. Environ Microbiol 15:2879–2893

    PubMed  Google Scholar 

  50. Kuliasha CA, Finlay JA, Franco SC, Clare AS, Stafslien SJ, Brennan AB (2017) Marine anti-biofouling efficacy of amphiphilic poly(coacrylate) grafted PDMSe: effect of graft molecular weight. Biofouling 33:252–267

    CAS  PubMed  Google Scholar 

  51. Bouyssou A (2013) The maritime commons : digital repository of the world biofouling : a means of aquatic species transfer

  52. Callow JA, Callow ME (2011) Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat Commun 2:210–244

    Google Scholar 

  53. Dafforn KA, Lewis JA, Johnston EL (2011) Antifouling strategies: history and regulation, ecological impacts and mitigation. Mar Pollut Bull 62:453–465

    CAS  PubMed  Google Scholar 

  54. Compère C, Bellon-Fontaine MN, Bertrand P et al (2001) Kinetics of conditioning layer formation on stainless steel immersed in seawater. Biofouling 17:129–145

    Google Scholar 

  55. Hoa ND, El-Safty SA (2011) Synthesis of mesoporous NiO nanosheets for the detection of toxic NO 2 gas. Chem - A Eur J 17:12896–12901. https://doi.org/10.1002/chem.201101122

    Article  CAS  Google Scholar 

  56. Nguyen H, El-Safty SA (2011) Meso- and macroporous Co3O4 nanorods for effective VOC gas sensors. J Phys Chem C 115:8466–8474

    CAS  Google Scholar 

  57. Dahlbäck B, Blanck H, Nydén M (2010) The challenge to find new sustainable antifouling approaches for shipping. Coast Mar Sci 34:212–215

    Google Scholar 

  58. Suman TY, Radhika Rajasree SR, Kirubagaran R (2015) Evaluation of zinc oxide nanoparticles toxicity on marine algae chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicol Environ Saf 113:23–30

    CAS  PubMed  Google Scholar 

  59. Coutts ADM, Taylor MD (2004) A preliminary investigation of biosecurity risks associated with biofouling on merchant vessels in New Zealand. New Zeal J Mar Freshw Res 38:215–229

    Google Scholar 

  60. Selim MS, Shenashen MA, El-Safty SA et al (2017) Recent progress in marine foul-release polymeric nanocomposite coatings. Prog Mater Sci 87:1–32. https://doi.org/10.1016/j.pmatsci.2017.02.001

    Article  CAS  Google Scholar 

  61. Yebra DM, Kiil S, Dam-Johansen K (2004) Antifouling technology - past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coatings 50:75–104

    CAS  Google Scholar 

  62. Kiil S, Weinell CE, Pedersen MS, Dam-Johansen K (2001) Analysis of self-polishing antifouling paints using rotary experiments and mathematical modeling. Ind Eng Chem Res 40:3906–3920

    CAS  Google Scholar 

  63. Champ MA (2000) A review of organotin regulatory strategies, pending actions, related costs and benefits. Sci Total Environ 258:21–71

    CAS  PubMed  Google Scholar 

  64. van der Geest HG, Booij P, Sjollema SB et al (2014) Hazard and risk of herbicides for marine microalgae. Environ Pollut 187:106–111

    PubMed  Google Scholar 

  65. Yebra DM, Kiil S, Weinell CE, Dam-Johansen K (2006) Presence and effects of marine microbial biofilms on biocide-based antifouling paints. Biofouling 22:33–41

    PubMed  Google Scholar 

  66. Rittschof D (2009) Trends in marine biofouling research. Woodhead Publishing Limited

  67. Okoro HK, Fatoki OS, Adekola FA et al (2011) Sources, environmental levels and toxicity of organotin in marine environment - a review. Asian J Chem 23:473–482

    CAS  Google Scholar 

  68. Siedenbiedel F, Tiller JC (2012) Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers (Basel) 4:46–71

    CAS  Google Scholar 

  69. Dahl B, Blanck H (1996) Toxic effects of the antifouling agent Irgarol 1051 on periphyton communities in coastal water microcosms. Mar Pollut Bull 32:342–350

    CAS  Google Scholar 

  70. Sapozhnikova Y, Wirth E, Schiff K, Fulton M (2013) Antifouling biocides in water and sediments from California marinas. Mar Pollut Bull 69:189–194

    CAS  PubMed  Google Scholar 

  71. Blanck H, Eriksson KM, Grönvall F, Dahl B, Guijarro KM, Birgersson G, Kylin H (2009) A retrospective analysis of contamination and periphyton PICT patterns for the antifoulant irgarol 1051, around a small marina on the Swedish west coast. Mar Pollut Bull 58:230–237

    CAS  PubMed  Google Scholar 

  72. Hong-lai GW, Ya-peng N, Han Xia L (2018) Dopamine-based poly(sulfubetaine methacrylate) surface modification and its antifouling properties. Nat Sci Ed 44:316–322

    Google Scholar 

  73. Abiraman T, Ramanathan E, Kavitha G, Rengasamy R, Balasubramanian S (2017) Synthesis of chitosan capped copper oxide nanoleaves using high intensity (30 kHz) ultrasound sonication and their application in antifouling coatings. Ultrason Sonochem 34:781–791

    CAS  PubMed  Google Scholar 

  74. Abiraman T, Balasubramanian S (2017) Synthesis and characterization of large-scale (<2 nm) chitosan-decorated copper nanoparticles and their application in antifouling coating. Ind Eng Chem Res 56:1498–1508

    CAS  Google Scholar 

  75. Al-Naamani L, Dobretsov S, Dutta J, Burgess JG (2017) Chitosan-zinc oxide nanocomposite coatings for the prevention of marine biofouling. Chemosphere 168:408–417

    CAS  PubMed  Google Scholar 

  76. Abiraman T, Kavitha G, Rengasamy R, Balasubramanian S (2016) Antifouling behavior of chitosan adorned zinc oxide nanorods. RSC Adv 6:69206–69217

    CAS  Google Scholar 

  77. Mooss VA, Hamza F, Zinjarde SS, Athawale AA (2018) Polyurethane films modified with polyaniline-zinc oxide nanocomposites for biofouling mitigation. Chem Eng J 359:1400–1410

    Google Scholar 

  78. Adelung R, Baum MJ (2016) Complex shaped ZnO nano- and microstructure based polymer composites : mechanically stable. Phys Chem Chem Phys 18:7114–7123

    PubMed  Google Scholar 

  79. Li L, Chen S, Jiang S (2007) Protein interactions with oligo ( ethylene glycol ) ( OEG ) self- assembled monolayers : OEG stability, surface packing density and protein adsorption. J Biomater Sci Polym 18:37–41

    Google Scholar 

  80. Misdan N, Ismail AF, Hilal N (2016) Recent advances in the development of ( bio ) fouling resistant thin fi lm composite membranes for desalination ☆. DES 380:105–111

    CAS  Google Scholar 

  81. Satarkar NS, Biswal D, Hilt JZ (2010) Hydrogel nanocomposites- a review of applications as remote controlled biomaterials.Pdf. Soft Matter 6:2364–2371

    CAS  Google Scholar 

  82. Jing J, Hongkai W, Zhong H, Yang L, Jun Wei JL (2015) IPN hydrogel nanocomposites based on agarose and ZnO with antifouling and bactericidal properties. Mater Sci Eng C 61:376–386

    Google Scholar 

  83. Krupa AND, Vimala R (2016) Evaluation of tetraethoxysilane ( TEOS ) sol – gel coatings , modified with green synthesized zinc oxide nanoparticles for combating microfouling. Mater Sci Eng C 61:728–735 Evaluation of tetraethoxysilane (TEOS) sol-gel coatings, modified with green synthesized zinc oxide nanoparticles for combating microfouling

    CAS  Google Scholar 

  84. Meyer A, Baier R, Wood CD, Stein J, Truby K, Holm E, Montemarano J, Kavanagh C, Nedved B, Smith C, Swain G, Wiebe D (2006) Contact angle anomalies indicate that surface-active eluates from silicone coatings inhibit the adhesive mechanisms of fouling organisms. Biofouling 22:411–423

    CAS  PubMed  Google Scholar 

  85. Selim MS, El-Safty SA, El-Sockary MA et al (2015) Tailored design of Cu2O nanocube/silicone composites as efficient foul-release coatings. RSC Adv 5:19933–19943

    CAS  Google Scholar 

  86. Jiang S, Sreethawong T, Lee SSC et al (2015) Fabrication of copper nanowire films and their incorporation into polymer matrices for antibacterial and marine antifouling applications. Adv Mater Interfaces 2:1–8

    Google Scholar 

  87. Arukalam IO, Oguzie EE, Li Y (2016) Journal of colloid and Interface science fabrication of FDTS-modified PDMS-ZnO nanocomposite hydrophobic coating with anti-fouling capability for corrosion protection of Q235 steel. J Colloid Interface Sci 484:220–228

    CAS  PubMed  Google Scholar 

  88. Eduok U, Faye O, Szpunar J (2017) Recent developments and applications of protective silicone coatings: a review of PDMS functional materials. Prog Org Coatings 111:124–163

    CAS  Google Scholar 

  89. Sankar GG, Sathya S, Murthy PS et al (2015) Polydimethyl siloxane nanocomposites : their antifouling ef fi cacy in vitro and in marine conditions. Int Biodeterior Biodegradation 104:307–314

    Google Scholar 

  90. Selim MS, Yang H, Wang FQ, Fatthallah NA, Yong Huang SK (2018) Silicone/ZnO nanorod composite coating as a marine antifouling surface. Appl Surf Sci 446:40–50

    Google Scholar 

  91. Zhang J, Huang W, Han Y (2006) Wettability of zinc oxide surfaces with controllable structures. Langmuir 22:2946–2950

    CAS  PubMed  Google Scholar 

  92. Bharathidasan T, Dhandapani P (2015) Zinc oxide-containing porous boron-carbon-nitrogen sheets from glycine-nitrate combustion : Synthesis , self-cleaning and sunlight driven photocatalytic activity. Appl Mater Interfaces 7:18450–18459 Zinc Oxide-Containing Porous Boron-Carbon-Nitrogen Sheets from Glycine-Nitrate Combustion: Synthesis, Self-Cleaning, and Sunlight-Driven Photocatalytic Activity

    CAS  Google Scholar 

  93. Lejars M, Margaillan A, Bressy C (2012) Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem Rev 112:4347–4390

    CAS  PubMed  Google Scholar 

  94. Nurioglu AG, Esteves ACC, de With G (2015) Non-toxic, non-biocide-release antifouling coatings based on molecular structure design for marine applications. J Mater Chem B 3:6547–6570

    CAS  PubMed  Google Scholar 

  95. Kyrikou I, Briassoulis D (2007) Biodegradation of agricultural plastic films: a critical review. J Polym Environ 15:125–150

    CAS  Google Scholar 

  96. Gross RA, Kalra B (2002) Biodegradable polymers for the Enviroment. Science (80- ) 297:803–807

  97. Xie Q, Xie Q, Pan J, Ma C, Zhang G (2018) Biodegradable polymer with hydrolysis-induced zwitterions for Antibiofouling. Appl Mater Interfaces 10:11213–11220

    CAS  Google Scholar 

  98. Shaik MR, Korsapati M, Panati D (2012) Polymers in controlled drug delivery systems. Int J Pharma Sci 2:112–116

    Google Scholar 

  99. Ã PG, Mayadunne R, Adhikari R (2006) Recent developments in biodegradable synthetic polymers. Biotechnol Annu Rev 12:301–347

    Google Scholar 

  100. Vainionp S, Rokkanen P (1989) Surgical applications of biodegradable polymers in human tissues. Prog Polym Sci 14:679–716

    Google Scholar 

  101. Kolybaba M, Tabil LG, Panigrahi S et al (2003) Biodegradable Polymers: Past , Present , and Future. Am Soc Agric Biol Eng 0300:1–15

    Google Scholar 

  102. Dai G, Xie Q, Ma C, Zhang G (2019) Biodegradable poly ( ester-co-acrylate ) with Antifoulant pendant groups for marine anti-biofouling. ACS Appl Mater Interfaces 11:11947–11953

    CAS  PubMed  Google Scholar 

  103. Peng Q, Zhou X, Wang Z, Xie Q, Ma C, Zhang G, Gong X (2019) Three-dimensional bacterial motions near a surface investigated by digital holographic microscopy : effect of surface stiffness. Langmuir 35:12257–12263

    CAS  PubMed  Google Scholar 

  104. Qi M, Song Q, Zhao J, Ma C, Zhang G, Gong X (2017) Three-dimensional bacterial behavior near dynamic surfaces formed by degradable polymers. Langmuir 33:13098–13104. https://doi.org/10.1021/acs.langmuir.7b02806

    Article  CAS  PubMed  Google Scholar 

  105. Ma J, Ma C, Zhang G (2015) Degradable polymer with protein resistance in a marine environment. Langmuir 31:6471–6478. https://doi.org/10.1021/acs.langmuir.5b01720

    Article  CAS  PubMed  Google Scholar 

  106. Zhang L, Xiong C, Deng X (1995) Biodegradable polyester blends for biomedical application. J Appl Polym Sci 56:103–112

    CAS  Google Scholar 

  107. Ma Z, Hong Y, Nelson DM, Pichamuthu JE, Leeson CE, Wagner WR (2011) Biodegradable polyurethane ureas with variable polyester or polycarbonate soft segments: effects of crystallinity, molecular weight, and composition on mechanical properties. Biomacromolecules 12:3265–3274

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Chen S, Ma C, Zhang G (2017) Biodegradable polymer as controlled release system of organic antifoulant to prevent marine biofouling. Prog Org Coatings 104:58–63

    Google Scholar 

  109. Yi J, Huang C, Zhuang H et al (2015) Progress in organic coatings degradable polyurethane based on star-shaped polyester polyols ( trimethylolpropane and □ -caprolactone ) for marine antifouling. Prog Org Coatings 87:161–170

    CAS  Google Scholar 

  110. Ma C, Xu L, Xu W, Zhang G (2013) Degradable polyurethane for marine anti-biofouling. J Mater Chem B 1:3099–3106

    CAS  PubMed  Google Scholar 

  111. Xu W, Gan T, Zhang G (2014) Marine biofouling resistance of polyurethane with biodegradation and Hydrolyzation. ACS Appl Mater Interfaces 6:4017–4020

    CAS  PubMed  Google Scholar 

  112. Ma J, Ma C, Yang Y et al (2014) Biodegradable polyurethane carrying Antifoulants for inhibition of marine biofouling. Ind Eng Chem Res 53:12753–12759

    CAS  Google Scholar 

  113. Yang J, Li L, Ma C, Ye X (2016) Degradable polyurethane with poly(2-ethyl-2-oxazoline) brushes for protein resistance. RSC Adv 6:69930–69938

    CAS  Google Scholar 

  114. Ou B, Chen M, Huang R, Zhou H (2016) Preparation and application of novel biodegradable polyurethane copolymer. RSC Adv 6:47138–47144. https://doi.org/10.1039/C6RA03064E

    Article  CAS  Google Scholar 

  115. Yao J, Chen S, Ma C, Zhang G (2014) Marine anti-biofouling system with poly(ε-caprolactone)/clay composite as carrier of organic antifoulant. J Mater Chem B 2:5100–5106

    CAS  PubMed  Google Scholar 

  116. Chen S, Ma C, Zhang G (2016) Biodegradable polymers for marine antibiofouling: poly(ε-caprolactone)/poly(butylene succinate) blend as controlled release system of organic antifoulant. Polymer (Guildf) 90:215–221

    CAS  Google Scholar 

  117. Fay F, Linossier I, Valle K (2007) Biodegradable poly(ester-anhydride) for new antifouling coating. Macromolecules 8:1751–1758

    Google Scholar 

  118. Faÿ F, Linossier I, Langlois V, Renard E, Vallée-Réhel K (2006) Degradation and controlled release behavior ε-caprolactone copolymers in biodegradable antifouling coatings. Biomacromolecules 7:851–857

    PubMed  Google Scholar 

  119. Fay F, Linossier I, Renard E, Valle K (2007) Poly ( e -caprolactone-co- d -valerolactone ) as new degradable binder used for antifouling paint. Eur Polym J 43:4800–4813

    CAS  Google Scholar 

  120. Loriot M, Linossier I, Vallée-Réhel K, Faÿ F (2017) Influence of biodegradable polymer properties on antifouling paints activity. Polymers (Basel) 9:36

    Google Scholar 

  121. Azemar F, Faÿ F, Réhel K, Linossier I (2015) Development of hybrid antifouling paints. Prog Org Coatings 87:10–19

    CAS  Google Scholar 

  122. Zhou X, Xie Q, Ma C et al (2015) Inhibition of marine biofouling by use of degradable and Hydrolyzable Silyl acrylate copolymer. Ind Eng Chem Res 54:9559–9565

    CAS  Google Scholar 

  123. Xie Q, Ma C, Zhang G, Bressy C (2018) Poly(ester)–poly(silyl methacrylate) copolymers: synthesis and hydrolytic degradation kinetics. Polym Chem 9:1448–1454

    CAS  Google Scholar 

  124. Dai G, Xie Q, Chen S et al (2018) Biodegradable poly ( ester ) -poly ( methyl methacrylate ) copolymer for marine. Prog Org Coatings 124:55–60

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21776249, 21878267, and 21576236).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghua Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Jamil, M.I., Jiang, J. et al. An overview of controlled-biocide-release coating based on polymer resin for marine antifouling applications. J Polym Res 27, 85 (2020). https://doi.org/10.1007/s10965-020-02054-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02054-z

Keywords

Navigation