Skip to main content
Log in

Organosilicate polymer as high temperature Resistent inhibitor for water-based drilling fluids

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, the inhibition property of an organosilicate polymer was investigated as an inhibitor for water-based drilling fluids. A novel polymer was prepared using 2-acrylamido-2-methylpropane sulphonic acid (AMPS), N, N-dimethyl acrylamide (DMAA), maleic anhydride (MA), and γ-methacryloxypropyl trimethoxy silane (MEMO) as the polymerisation monomers, named as ADMM. Also, the inhibition performance was evaluated by an immersion test, a linear swelling test, and a shale cuttings recovery test. Compared with that of the other inhibitors, the addition of ADMM can effectively inhibit the swelling of mud balls, resulting in the lowest swelling height of the drilling fluid. ADMM was characterised using a thermogravimetric analysis, a Fourier transform infrared spectrometer, a nuclear magnetic resonance instrument, a laser particle size distribution instrument, and a zeta potentiometric analyser. The results showed that the decomposition temperature of ADMM was 330 °C. The shale cuttings recovery of the 1.0% ADMM solution at 150 °C was 76.32%. The dynamic shear rise rate was as low as 160%. Furthermore, ADMM was adsorbed on the clay surface at many points to form a “protective film” of the polymer, thus inhibiting the hydration of the clay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ADMM :

Novel Organosilicate polymer prepared by AMPS, DMAA, MA, MEMO

WBDF :

Water-based drilling fluid

SEM :

Scanning electron microscopy

mm :

Millimeter

ppm :

Part per million

XRD :

X-ray Diffraction

AMPS :

2-acrylamido-2-methylpropane sulphonic acid

DMAA :

N, N-dimethyl acrylamide

MA :

Maleic anhydride

MEMO :

γ-methacryloxypropyl trimethoxy silane

AV :

Apparent viscosity, cp

PV :

Plastic viscosity, cp

YP :

Yield point, Pa

References

  1. Pašić B, Gaurina Međimurec N, Matanović D (2007). Rudarsko-geološko-naftni zbornik 19:87

    Google Scholar 

  2. Liu X, Zeng W, Liang L, Lei M (2016). J Nat Gas Sci Eng 31:1

    Article  Google Scholar 

  3. Striolo A, Cole DR (2017). Energ Fuel 31:10300

    Article  CAS  Google Scholar 

  4. Ahmad, M.: 2014

  5. Sondergeld, C. H.; Newsham, K. E.; Comisky, J. T.; Rice, M. C.; Rai, C. S. SPE Unconventional Gas Conference, 2010

  6. Mao H, Guo Y, Wang G, Yang C (2010). Rock Soil Mech 31:2723

    CAS  Google Scholar 

  7. Wilson M, Wilson L (2014). Clay Miner 49:127

    Article  Google Scholar 

  8. Liu X, Zeng W, Liang L, Xiong J (2016). Petroleum 2:54

    Article  Google Scholar 

  9. Gholizadeh-Doonechaly, N.; Tahmasbi, K.; Davani, E. SPE international symposium on oilfield chemistry, 2009

  10. Xiong, K.; Ma, P.; Yong, F.; Qian, F.; Yang, R.; Meng, Y. IADC/SPE Asia Pacific drilling technology conference and exhibition, 2012

  11. Qu Y, Lai X, Zou L, Su YN (2009). Appl Clay Sci 3:265

    Article  Google Scholar 

  12. Zhong H, Qiu Z, Huang W, Cao J (2012). Appl Clay Sci 67:36

    Article  Google Scholar 

  13. Balaban RD, Vidal ELF, Borges MR (2015). Appl Clay Sci 105:124

    Article  Google Scholar 

  14. Shadizadeh SR, Moslemizadeh A, Dezaki AS (2015). Appl Clay Sci 118:74

    Article  CAS  Google Scholar 

  15. An Y, Jiang G, Ren Y, Zhang L, Qi Y, Ge Q (2015). J Pet Sci Eng 135:253

    Article  CAS  Google Scholar 

  16. Chen Y, Zhao Y, Zhou S, Chu X, Yang L, Xing W (2009). Appl Clay Sci 46:148

    Article  CAS  Google Scholar 

  17. Wang, Q.; Zhao, Y.; Zhou, S.; Li, M.; Xing, W. Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM), 2011 International Conference on, 2011, pp 1157

  18. Cao J, Meng L, Yang Y, Zhu Y, Wang X, Yao C, Sun M, Zhong H (2017). Energ Fuel 31:11963

    Article  CAS  Google Scholar 

  19. Thuc C-NH, Grillet A-C, Reinert L, Ohashi F, Thuc HH, Duclaux L (2010). Appl Clay Sci 49:229

    Article  CAS  Google Scholar 

  20. Su J, Chu Q, Ren M (2014). J Polym Eng 34:153

    Article  CAS  Google Scholar 

  21. Bai, X. D.; Yang, Y.; Xiao, D. Y.; Pu, X. L.; Wang, X., J Appl Polym Sci 1322015

  22. Ma XP, Zhu ZX, Shi W, Hu YY (2017). Colloid Polym Sci 295:53

    Article  CAS  Google Scholar 

  23. Yanovska E, Vretik L, Nikolaeva O, Polonska Y, Sternik D, Kichkiruk OY (2017). Nanoscale Res Lett 12:217

    Article  CAS  Google Scholar 

  24. Huang X, Shen H, Sun J, Lv K, Liu J, Dong X, Luo S (2018). Acs Appl Mater Inter 10:33252

    Article  CAS  Google Scholar 

  25. Jain R, Mahto V, Sharma V (2015). J Nat Gas Sci Eng 26:526

    Article  CAS  Google Scholar 

  26. Yang L, Jiang G, Shi Y, Yang X (2017). Energ Fuel 31:4308

    Article  CAS  Google Scholar 

  27. Xu J, Qiu Z, Huang W, Zhao X (2017). J Nat Gas Sci Eng 37:462

    Article  CAS  Google Scholar 

  28. Xu JG, Qiu ZS, Zhao X, Zhong HY, Li GR, Huang WA (2018). J Pet Sci Eng 163:371

    Article  CAS  Google Scholar 

  29. Xiong Z, Tao S, Li X, Fu F, Li Y (2016). Petroleum 2:361

    Article  Google Scholar 

  30. Patel, A. D.; Stamatakis, E.; Davis, E.; Google Patents: 2001

  31. Specifications, A., American Petroleum Institute

  32. Zhong H, Shen G, Qiu Z, Lin Y, Fan L, Xing X, Li J (2019). J Pet Sci Eng 172:411

    Article  CAS  Google Scholar 

  33. Dhiman, A. S., Halifax: Dalhousie University2012

  34. Wan T, Li RX, Wu DQ, Hu ZW, Xu M, Cheng WZ, Zou CZ (2014). Polym Bull 71:2819

    Article  CAS  Google Scholar 

  35. Wu YM, Sun DJ, Zhang BQ, Zhang CG (2002). J Appl Polym Sci 83:3068

    Article  CAS  Google Scholar 

  36. Mao H, Qiu Z, Shen Z, Huang W (2015). J Pet Sci Eng 129:1

    Article  CAS  Google Scholar 

  37. Herron MM (1986). Clay Clay Miner 34:204

    Article  CAS  Google Scholar 

  38. Anderson RP, Tosca NJ, Gaines RR, Mongiardino Koch N, Briggs DE (2018). Geology 46:347

    Article  CAS  Google Scholar 

  39. An Y, Yu P (2018). J Pet Sci Eng 161:1

    Article  CAS  Google Scholar 

  40. Barast G, Razakamanantsoa A-R, Djeran-Maigre I, Nicholson T, Williams D (2017). Appl Clay Sci 142:60

    Article  CAS  Google Scholar 

  41. Cao C, Pu X, Wang G, Huang T (2018). Chem Tech Fuels Oil+ 53:966

    Article  CAS  Google Scholar 

  42. Chu Q, Luo P, Zhao Q, Feng J, Kuang X, Wang D (2013). J Appl Polym Sci 128:28

    Article  CAS  Google Scholar 

  43. Zhong H, Qiu Z, Huang W, Cao J (2011). J Pet Sci Eng 78:510

    Article  CAS  Google Scholar 

  44. Theng, B. K. G., Formation and properties of clay-polymer complexes; Elsevier, 2012

  45. Liu, L.; Pu, X. L.; Rong, K. S.; Yang, Y. D., J Appl Polym Sci 1352018

  46. Liu X, Zhao S (2008). J Appl Polym Sci 108:3038

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by Petro China Innovation Foundation (Grants 2018D-5007-0306), Joint Funds of the National Natural Science Foundation of China (No. U1762212), CNPC Science and Technology Project (No. 2018A-3907).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsheng Sun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Sun, J., Dai, Z. et al. Organosilicate polymer as high temperature Resistent inhibitor for water-based drilling fluids. J Polym Res 27, 107 (2020). https://doi.org/10.1007/s10965-019-1922-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1922-2

Keywords

Navigation