Skip to main content

Advertisement

Log in

Gelatin vs collagen-based sponges: evaluation of concentration, additives and biocomposites

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The use of collagen sponge-like materials come from a freeze-drying process has been intensively studied, although are too expensive. For this reason, the objective of this work was the development of gelatin sponge-like materials (a more affordable material) compared their mechanical (strain and frequency sweep tests in compression mode) and microstructural properties (scanning electron microscopy and porosity) with those of collagen at 0.5 and 1.0 wt.%. In addition, their properties have been improved with the incorporation of glutaraldehyde (0.10 wt.%) or the development of biocomposites with chitosan (ratio 50–50 and sandwich type). The results of this work showed that different formulations and latticework can modify the final characteristics of this materials, confirming the great potential of gelatin as a raw material for sponge-like materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Satyanarayana KG, Arizaga GGC, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—an overview. Prog Polym Sci 34:982–1021. https://doi.org/10.1016/j.progpolymsci.2008.12.002

    Article  CAS  Google Scholar 

  2. Chen J, Gardner DJ (2008) Dynamic mechanical properties of extruded nylon–wood composites. Polym Compos 29:372–379. https://doi.org/10.1002/pc.20400

    Article  CAS  Google Scholar 

  3. Doroudgarian N, Pupure L, Joffe R (2015) Moisture uptake and resulting mechanical response of bio-based composites. II. Composites. Polym Compos 36:1510–1519. https://doi.org/10.1002/pc.23058

    Article  CAS  Google Scholar 

  4. Work W, Horie K, Hess M (2004) Definition of terms related to polymer blends, composites and multiphase polymeric materials (IUPAC recommendations 2004). Pure Appl Chem 76:1985–2007. https://doi.org/10.1351/pac200476111985

    Article  CAS  Google Scholar 

  5. Abdul Hamid MZ, Ibrahim NA, Md Zin Wan Yunus W et al (2010) Effect of grafting on properties of oil palm empty fruit bunch fiber reinforced polycaprolactone biocomposites. J Reinf Plast Compos 29:2723–2731. https://doi.org/10.1177/0731684409359218

    Article  CAS  Google Scholar 

  6. da Silva V, Batista KC, Zattera AJ et al (2014) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/wood powder biocomposites: thermal and mechanical properties and water absorption profile. J Reinf Plast Compos 33:741–748. https://doi.org/10.1177/0731684413517278

    Article  CAS  Google Scholar 

  7. Gupta P, Nayak KK (2015) Characteristics of protein-based biopolymer and its application. Polym Eng Sci 55:485–498. https://doi.org/10.1002/pen.23928

    Article  CAS  Google Scholar 

  8. Fu J-H, Zhao M, Lin Y-R et al (2017) Degradable chitosan-collagen composites seeded with cells as tissue engineered heart valves. Hear Lung Circ 26:94–100. https://doi.org/10.1016/j.hlc.2016.05.116

    Article  Google Scholar 

  9. Sionkowska A (2016) Biopolymeric nanocomposites for potential biomedical applications. Polym Int 65:1123–1131. https://doi.org/10.1002/pi.5149

    Article  CAS  Google Scholar 

  10. Goonoo N, Bhaw-Luximon A, Bowlin GL, Jhurry D (2013) An assessment of biopolymer- and synthetic polymer-based scaffolds for bone and vascular tissue engineering. Polym Int 62:523–533. https://doi.org/10.1002/pi.4474

    Article  CAS  Google Scholar 

  11. Yousefi A-M, Gauvin C, Sun L et al (2007) Design and fabrication of 3D-plotted polymeric scaffolds in functional tissue engineering. Polym Eng Sci 47:608–618. https://doi.org/10.1002/pen.20732

    Article  CAS  Google Scholar 

  12. Jeong K-H, Park D, Lee Y-C (2017) Polymer-based hydrogel scaffolds for skin tissue engineering applications: a mini-review. J Polym Res 24:112. https://doi.org/10.1007/s10965-017-1278-4

    Article  CAS  Google Scholar 

  13. Cristescu I, Zamfirescu D, Vilcioiu D, et al (2014) Experimental evaluation on rat model of different Bioresorbable materials potentially used as orthopedic biomaterials. In: bioceramics 25: supplement. Trans tech publications, pp 196–199

  14. Santos MH, Shaimberg APM, Valerio P, et al (2007) Cytocompatibility evaluation of hydroxyapatite/collagen composites doped with Zn+2. MatÃ\copyrightria (Rio Janeiro) 12:307–312

  15. Thayer PS, Verbridge SS, Dahlgren LA, Kakar S, Guelcher SA, Goldstein AS (2016) Fiber/collagen composites for ligament tissue engineering: influence of elastic moduli of sparse aligned fibers on mesenchymal stem cells. J Biomed Mater Res Part A 104:1894–1901. https://doi.org/10.1002/jbm.a.35716

    Article  CAS  Google Scholar 

  16. Štol M, Tolar M, Adam M (1986) Synthetic polymer-collagen composites for biomedical use. Polymers in medicine II. Springer US, Boston, MA, pp 139–147

    Chapter  Google Scholar 

  17. Cui F-Z, Li Y, Ge J (2007) Self-assembly of mineralized collagen composites. Mater Sci Eng R Reports 57:1–27. https://doi.org/10.1016/j.mser.2007.04.001

    Article  CAS  Google Scholar 

  18. Iibuchi S, Matsui K, Kawai T et al (2009) Octacalcium phosphate collagen composites enhance bone healing in a dog tooth extraction socket model. Int J Oral Maxillofac Surg 38:524. https://doi.org/10.1016/j.ijom.2009.03.452

    Article  Google Scholar 

  19. Shen F, Cui Y, Yang L et al (2000) A study on the fabrication of porous chitosan/gelatin network scaffold for tissue engineering. Polym Int 49:1596–1599. https://doi.org/10.1002/1097-0126(200012)49:12<1596::AID-PI553>3.0.CO;2-S

    Article  CAS  Google Scholar 

  20. Shi L, Xiong L, Hu Y et al (2018) Three-dimensional printing alginate/gelatin scaffolds as dermal substitutes for skin tissue engineering. Polym Eng Sci 58:1782–1790. https://doi.org/10.1002/pen.24779

    Article  CAS  Google Scholar 

  21. Pandey AR, Singh US, Momin M, Bhavsar C (2017) Chitosan: application in tissue engineering and skin grafting. J Polym Res 24:125. https://doi.org/10.1007/s10965-017-1286-4

    Article  CAS  Google Scholar 

  22. Zhao J, Griffin M, Cai J, Li S, Bulter PEM, Kalaskar DM (2016) Bioreactors for tissue engineering: an update. Biochem Eng J 109:268–281. https://doi.org/10.1016/j.bej.2016.01.018

    Article  CAS  Google Scholar 

  23. Wu X, Liu Y, Li X, Wen P, Zhang Y, Long Y, Wang X, Guo Y, Xing F, Gao J (2010) Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta Biomater 6:1167–1177. https://doi.org/10.1016/j.actbio.2009.08.041

    Article  CAS  PubMed  Google Scholar 

  24. Perdivara I, Yamauchi M, Tomer KB (2013) Molecular characterization of collagen Hydroxylysine O-glycosylation by mass spectrometry: current status. Aust J Chem 66:760–769

    Article  CAS  Google Scholar 

  25. Teimouri A, Azadi M (2016) Preparation and characterization of novel chitosan/nanodiopside/nanohydroxyapatite composite scaffolds for tissue engineering applications. Int J Polym Mater Polym Biomater 65:917–927. https://doi.org/10.1080/00914037.2016.1180606

    Article  CAS  Google Scholar 

  26. Mohammadi Z, Mesgar AS-M, Rasouli-Disfani F (2016) Reinforcement of freeze-dried chitosan scaffolds with multiphasic calcium phosphate short fibers. J Mech Behav Biomed Mater 61:590–599. https://doi.org/10.1016/j.jmbbm.2016.04.022

    Article  CAS  PubMed  Google Scholar 

  27. Shahbazarab Z, Teimouri A, Chermahini AN, Azadi M (2018) Fabrication and characterization of nanobiocomposite scaffold of zein/chitosan/nanohydroxyapatite prepared by freeze-drying method for bone tissue engineering. Int J Biol Macromol 108:1017–1027. https://doi.org/10.1016/j.ijbiomac.2017.11.017

    Article  CAS  PubMed  Google Scholar 

  28. Sheikhpour M, Barani L, Kasaeian A (2017) Biomimetics in drug delivery systems: a critical review. J Control Release 253:97–109. https://doi.org/10.1016/j.jconrel.2017.03.026

    Article  CAS  PubMed  Google Scholar 

  29. Weadock K, Olson RM, Silver FH (1983) Evaluation of collagen crosslinking techniques. Biomater Med Devices Artif Organs 11:293–318. https://doi.org/10.3109/10731198309118815

    Article  PubMed  Google Scholar 

  30. Hsu S, Whu SW, Tsai C-L, Wu YH, Chen HW, Hsieh KH (2004) Chitosan as scaffold materials: effects of molecular weight and degree of deacetylation. J Polym Res 11:141–147. https://doi.org/10.1023/B:JPOL.0000031080.70010.0b

    Article  CAS  Google Scholar 

  31. Perez-Puyana V, Romero A, Guerrero A (2016) Influence of collagen concentration and glutaraldehyde on collagen-based scaffold properties. J Biomed Mater Res A 104:1462–1468. https://doi.org/10.1002/jbm.a.35671

    Article  CAS  PubMed  Google Scholar 

  32. O’Brien FJ, Harley BA, Yannas IV, Gibson LJ (2004) Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials 25:1077–1086

    Article  Google Scholar 

  33. Perez-Puyana V, Felix M, Romero A, Guerrero A (2019) Influence of the processing variables on the microstructure and properties of gelatin-based scaffolds by freeze-drying. J Appl Polym Sci 136:1–8. https://doi.org/10.1002/app.47671

    Article  CAS  Google Scholar 

  34. Schoof H, Apel J, Heschel I, Rau G (2001) Control of pore structure and size in freeze-dried collagen sponges. J Biomed Mater Res 58:352–357

    Article  CAS  Google Scholar 

  35. Pinto CF, Berger SB, Cavalli V, Bedran-Russo AK, Giannini M (2015) Influence of chemical and natural cross-linkers on dentin bond strength of self-etching adhesives. Int J Adhes Adhes 60:117–122. https://doi.org/10.1016/j.ijadhadh.2015.04.008

    Article  CAS  Google Scholar 

  36. Zhang X, Tang K, Zheng X (2016) Electrospinning and crosslinking of COL/PVA nanofiber-microsphere containing salicylic acid for drug delivery. J Bionic Eng 13:143–149. https://doi.org/10.1016/S1672-6529(14)60168-2

    Article  Google Scholar 

  37. Zhang Q, Liu L, Ren L, Wang F (1997) Preparation and characterization of collagen-chitosan composites. J Appl Polym Sci 64:2127–2130. https://doi.org/10.1002/(SICI)1097-4628(19970613)64:11<2127::AID-APP8>3.0.CO;2-L

    Article  CAS  Google Scholar 

  38. Al-Munajjed AA, Hien M, Kujat R et al (2008) Influence of pore size on tensile strength, permeability and porosity of hyaluronan-collagen scaffolds. J Mater Sci Mater Med 19:2859–2864. https://doi.org/10.1007/s10856-008-3422-5

    Article  CAS  PubMed  Google Scholar 

  39. Yang Y, Zhu X, Cui W, Li X, Jin Y (2009) Electrospun Composite Mats of Poly [( D , L - lactide ) -co- glycolide ] and Collagen with High Porosity as Potential Scaffolds for Skin Tissue Engineering. Macromol Mater Eng 294:611–619. https://doi.org/10.1002/mame.200900052

    Article  CAS  Google Scholar 

  40. Orawan J, Scoottawat B, Wonnup V (2006) Effect to phosphate compounds on gel-forming ability of surimi from bigeye snapper (Priacanthus tayanus). Food Hydrocoll 20:1153–1163

    Article  Google Scholar 

  41. Lin C, Hsu S, Huang C et al (2009) Biomaterials a scaffold-bioreactor system for a tissue-engineered trachea. Biomaterials 30:4117–4126. https://doi.org/10.1016/j.biomaterials.2009.04.028

    Article  CAS  PubMed  Google Scholar 

  42. Lv Q, Feng Q (2006) Preparation of 3-D regenerated fibroin scaffolds with freeze drying method and freeze drying/foaming technique. J Mater Sci Mater Med 17:1349–1356. https://doi.org/10.1007/s10856-006-0610-z

    Article  CAS  PubMed  Google Scholar 

  43. Perez-Puyana V, Romero A, Guerrero A (2016) Influence of collagen concentration and glutaraldehyde on collagen-based scaffold properties. J Biomed Mater Res Part A 104:1462–1468. https://doi.org/10.1002/jbm.a.35671

    Article  CAS  Google Scholar 

  44. Plunkett N, O’Brien FJ (2011) Bioreactors in tissue engineering. Technol Health Care 19:55–69. https://doi.org/10.3233/THC-2011-0605

    Article  PubMed  Google Scholar 

  45. Oryan A, Kamali A, Moshiri A, Baharvand H, Daemi H (2018) Chemical crosslinking of biopolymeric scaffolds: current knowledge and future directions of crosslinked engineered bone scaffolds. Int J Biol Macromol 107:678–688. https://doi.org/10.1016/j.ijbiomac.2017.08.184

    Article  CAS  PubMed  Google Scholar 

  46. Autissier A, Le Visage C, Pouzet C et al (2010) Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process. Acta Biomater 6:3640–3648. https://doi.org/10.1016/j.actbio.2010.03.004

    Article  CAS  PubMed  Google Scholar 

  47. Utech S, Boccaccini AR (2016) A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers. Springer US

  48. Sancho J, Miravete A (2006) Design of composite structures including delamination studies. Compos Struct 76:283–290. https://doi.org/10.1016/j.compstruct.2004.11.011

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of a research project, with reference CTQ2015-71164-P, sponsored “Ministerio de Economía y Competitividad” from Spanish Government (MINECO/FEDER, EU). The authors gratefully acknowledge their financial support. The authors also acknowledge the Microscopy Service (CITIUS-Universidad de Sevilla) for providing full access and assistance to the JEOL 6460-LV. The authors also acknowledge University of Seville and “Ministerio de Educación y Formación Profesional” for the predoctoral fellowships of Victor M. Perez-Puyana (VPPI-US) and M. Jiménez Rosado (Ref. FPU17/01718).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes Jiménez-Rosado.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez-Puyana, V., Jiménez-Rosado, M., Rubio-Valle, J.F. et al. Gelatin vs collagen-based sponges: evaluation of concentration, additives and biocomposites. J Polym Res 26, 190 (2019). https://doi.org/10.1007/s10965-019-1863-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1863-9

Keywords

Navigation