Skip to main content
Log in

The relaxation times of unentangled polymer melts with different molecular architectures

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Monte Carlo algorithm is adopted to simulate linear, ring, H-shaped and three-arm star polymer melts, and the dependence of relaxation times defined by different methods on polymer size is investigated. Statistical and dynamic properties of several unentangled polymer melts are also revealed for comparison. It is obviously that the numerical difference is small when relaxation times defined by the ratio of maximum mean-square end-to-end distance of several polymers as a function of corresponding mean-square radius of gyration, and data for different architectures collapse onto a universal curve in unentangled regime. The relaxation times for several polymer exhibits weak dependence on architecture. However, the special relationship cannot be found through the relaxation times defined by the position of the intersection of g2 and g3, end-to-end correlation function and mean-square radius of gyration, with stronger architecture dependence. The correctness of the relationship is also reflected by mean-square monomer displacement. The result provides a new understanding of the correlation between relaxation time and polymer size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, Kapteijn F, Llabrés i Xamena F X, Gascon J (2015) Nat Mater 14:48

    Article  CAS  Google Scholar 

  2. Jochum FD, Theato P (2013) Chem Soc Rev 42:7468

    Article  CAS  Google Scholar 

  3. Williams G, Trask R, Bond I (2007) Compos A: Appl Sci Manuf 38:1525

    Article  Google Scholar 

  4. Choudhary S (2018) J Polym Res 25:116

    Article  Google Scholar 

  5. Wang LD, Tong L, Sun HY, Tang J, Zhang T (2018) J Polym Res 25:47

    Article  Google Scholar 

  6. Zegaoui A, Derradji M, Medjahed A, et al. (2018) J Polym Res 25:250

    Article  Google Scholar 

  7. Kremer K, Grest G (1990) J Chem Phys 92:5057

    Article  CAS  Google Scholar 

  8. McKee MG, Wilkes GL, Colby RH, Long TE (2004) Macromolecules 37:1760

    Article  CAS  Google Scholar 

  9. Yasuda KY, Armstrong RC, Cohen RE (1981) Rheol Acta 20:163

    Article  CAS  Google Scholar 

  10. Hou JX, Svaneborg C, Everaers R, Grest GS (2010) Phys Rev Lett 105:068301

    Article  Google Scholar 

  11. Huang ZW, Hou JX, Xie C, Zhang H (2015) Modern Phys Lett B 29:1550091

    Article  Google Scholar 

  12. Hou JX, Yu XC, Huang ZW (2017) J Polym Res 24:97

    Article  Google Scholar 

  13. Hou JX, Zhang YH, Chen Y, Yu XC (2017) Modern Phys Lett B 31:1750028

    Google Scholar 

  14. Roovers J (1985) Macromolecules 18:1359

    Article  CAS  Google Scholar 

  15. Kapnistos M, Lang M, Vlassopoulos D, Pyckhout-Hintzen W, Richter D, Cho D, Chang T, Rubinstein M (2008) Nat Mater 7:997

    Article  CAS  Google Scholar 

  16. Pasquino R, Vasilakopoulos TC, Jeong YC, Lee H, Rogers S, Sakellariou G, Allgaier J, Takano A, Brás A R, Chang T, Gooßen S, Pyckhout-Hintzen W, Wischnewski A, Hadjichristidis N, Richter D, Rubinstein M, Vlassopoulos D (2013) ACS Macro Lett 2:874

    Article  CAS  Google Scholar 

  17. Endo K (2008) Front Polym Synthes 217:121

    Article  CAS  Google Scholar 

  18. Tu ZH, Hou JX (2018) Modern Phys Lett B 32:1850266

    Google Scholar 

  19. Vao-soongnern V (2019) J Polym Res 26:128

    Article  Google Scholar 

  20. Robertson RM, Smith DE (2007) Proc Natl Acad Sci 104:4824

    Article  CAS  Google Scholar 

  21. Arrighi V, Gagliardi S, Dagger AC, Semlyen JA, Higgins JS, Shenton MJ (2004) Macromolecules 37:8057

    Article  CAS  Google Scholar 

  22. Halverson JD, Grest GS, Grosberg AY, Kremer K (2012) Phys Rev Lett 108:038301

    Article  Google Scholar 

  23. Bielawski CW, Benitez D, Grubbs RH (2003) J Am Chem Soc 125:8424

    Article  CAS  Google Scholar 

  24. Watzlawek M, Likos CN, Löwen H (1999) Phys Rev Lett 82:5289

    Article  CAS  Google Scholar 

  25. Perny S, Allgaier J, Cho D, Lee W, Chang T (2001) Macromolecules 34:5408

    Article  CAS  Google Scholar 

  26. Li N, Yan T, Li Z, Thurn-Albrecht T, Binder WH (2012) Energy Environ Sci 5:7888

    Article  CAS  Google Scholar 

  27. Jabbarzadeh A, Atkinson JD, Tanner RI (2003) Macromolecules 36:5020

    Article  CAS  Google Scholar 

  28. Xu XL, Chen JZ, An LJ (2015) J Chem Phys 142:074903

    Article  Google Scholar 

  29. Doi M, Edwards SF (1988) The theory of polymer dynamics. Clarendon Press, Oxford

    Google Scholar 

  30. Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, New York

    Google Scholar 

  31. Carrnesin I, Kremer K (1988) Macromolecules 21:2819

    Article  Google Scholar 

  32. Deutsch HP, Binder K (1991) J Chem Phys 94:2294

    Article  CAS  Google Scholar 

  33. Shaffer JS (1994) J Chem Phys 101:4205

    Article  CAS  Google Scholar 

  34. de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, New York

    Google Scholar 

  35. Hou JX (2017) J Chem Phys 146:026101

    Article  Google Scholar 

  36. de Gennes PG (2002) Macromolecules 35:3785

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Xuan Hou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, YF., Xue, KL., Yu, XC. et al. The relaxation times of unentangled polymer melts with different molecular architectures. J Polym Res 26, 192 (2019). https://doi.org/10.1007/s10965-019-1861-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1861-y

Keywords

Navigation