Skip to main content
Log in

Molecular Dynamics Study of Star Polymer Melts under Start-up Shear

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

It has been established that star polymers with a large number of arms display both the conventional chain relaxation and a slower interchain relaxation due to the formation of hard cores, which is called the local structural relaxation. Here, we demonstrate that this unique relaxation property of multi-arm stars leads to unusual rheological behaviors. We study the response of star polymer melts with various arm numbers to start-up shear flow via nonequilibrium molecular dynamics simulation. Our simulation results indicate that the stress-strain response of multi-arm star polymer melts differs from that of star polymers with a small number of arms in both quantitative and qualitative manners. While the multi-arm star polymer melts exhibit an overshoot peak in the stress-strain curve both at relatively small and sufficiently large shear rates, two overshoot peaks appear when the flow strength is comparable to the relaxation time of the star polymers. This double stress overshoot is absent in linear polymers and star polymers with a small number of arms and is evidently related to the presence of the local structural relaxation in star polymers with a large number of arms. We present a detailed analysis of the conformational and dynamical properties of star polymer melts under start-up shear to gain a molecular understanding of their stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lapienis, G. Star-shaped polymers having PEO arms. Prog. Polym. Sci. 2009, 34, 852–892.

    Article  CAS  Google Scholar 

  2. Blencowe, A.; Tan, J. F.; Goh, T. K.; Qiao, G. G. Core cross-linked star polymers via controlled radical polymerization. Polymer (Guilford) 2009, 50, 5–32.

    Article  CAS  Google Scholar 

  3. Gao, H.; Matyjaszewski, K. Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: from stars to gels. Prog. Polym. Sci. 2009, 34, 317–350.

    Article  CAS  Google Scholar 

  4. Zhan, C.; Li, S.; Cui, J.; Chen, Y. Multiarm star poly(ε-caprolactone) with hyperbranched polyamidoamine as core capable of selective accommodating cationic or anionic guests. Chinese J. Polym. Sci. 2015, 33, 920–930.

    Article  CAS  Google Scholar 

  5. Yang, Z.; Tian, X.; Liu, L.; Chen, J. Role of hydrodynamic interactions in the deformation of star polymers in poiseuille flow. Chinese J. Polym. Sci. 2020, 38, 363–370.

    Article  CAS  Google Scholar 

  6. Gao, C.; Wang, Y.; Zhu, W.; Shen, Z. Resorcinarene-centered amphiphilic star-block copolymers: synthesis, micellization and controlled drug release. Chinese J. Polym. Sci. 2014, 32, 1431–1441.

    Article  CAS  Google Scholar 

  7. Vlassopoulos, D.; Fytas, G.; Pakula, T.; Roovers, J. Multiarm star polymers dynamics. J. Phys.-Condes. Matter 2001, 13, R855–R876.

    Article  CAS  Google Scholar 

  8. Singh, S. P.; Fedosov, D. A.; Chatterji, A.; Winkler, R. G.; Gompper, G. Conformational and dynamical properties of ultra-soft colloids in semi-dilute solutions under shear flow. J. Phys.-Condes. Matter 2012, 34, 464103.

    Article  CAS  Google Scholar 

  9. Vlassopoulos, D.; Fytas, G.; Roovers, J.; Pakula, T.; Fleischer, G. Ordering and dynamics of soft spheres in melt and solution. Faraday Discuss. 1999, 112, 225–235.

    Article  CAS  Google Scholar 

  10. Shen, Y.; Ruan, S.; Ye, S.; Sun, T.; Wang, J. A steered molecular dynamics simulation on the elastic behavior of adsorbed star polymer chains. Chinese J. Polym. Sci. 2010, 38, 789–799.

    Article  CAS  Google Scholar 

  11. Fan, J.; Emamy, H.; Chremos, A.; Douglas, J. F.; Starr, F. W. Dynamic heterogeneity and collective motion in star polymer melts. J. Chem. Phys. 2020, 152, 054904.

    Article  CAS  PubMed  Google Scholar 

  12. Chremos, A.; Glynos, E.; Green, P. F. Structure and dynamical intra-molecular heterogeneity of star polymer melts above glass transition temperature. J. Chem. Phys. 2015, 142, 044901.

    Article  PubMed  CAS  Google Scholar 

  13. Chremos, A.; Douglas, J. F. Communication: when does a branched polymer become a particle? J. Chem. Phys. 2015, 143, 111104.

    Article  PubMed  CAS  Google Scholar 

  14. Vlassopoulos, D.; Cloitre, M. Tunable rheology of dense soft deformable colloids. Curr. Opin. Colloid Interface Sci. 2014, 19, 561–574.

    Article  CAS  Google Scholar 

  15. Gury, L.; Gauthier, M.; Cloitre, M.; Vlassopoulos, D. Colloidal jamming in multiarm star polymer melts. Macromolecules 2019, 52, 4617–4623.

    Article  CAS  Google Scholar 

  16. Wang, J.; Yu, Y.; Guo, Y.; Luo, W.; Hu, W. Local transient jamming in stress relaxation of bulk amorphous polymers. Chinese J. Polym. Sci. 2021, 39, 906–913.

    Article  CAS  Google Scholar 

  17. Padding, J. T.; Ruymbeke, V. E.; Vlassopoulos, D.; Briels, W. J. Computer simulation of the rheology of concentrated star polymer suspensions. Rheol. Acta 2010, 49, 473–484.

    Article  CAS  Google Scholar 

  18. Winkler, R. G.; Singh, S. P.; Huang, C.; Fedosov, D. A.; Mussawisade, K.; Chatterji A.; Ripoll, M.; Gompper, G. Mesoscale hydrodynamics simulations of particle suspensions under shear flow: from hard to ultrasoft colloids. Eur. Phys. J.-Spec. Top. 2013, 222, 2773–2786.

    Article  CAS  Google Scholar 

  19. Johnson, K. J.; Glynos, E.; Sakellariou, G.; Green, P. Dynamics of star-shaped polystyrene molecules: from arm retraction to cooperativity. Macromolecules 2016, 49, 5669–5676.

    Article  CAS  Google Scholar 

  20. Glynos, E.; Frieberg, B.; Chremos, A.; Sakellariou, G.; Gidley, D. W.; Green, P. F. Vitrification of thin polymer films: from linear chain to soft colloid-like behavior. Macromolecules 2015, 48, 2305–2312.

    Article  CAS  Google Scholar 

  21. Vlassopoulos, D. Colloidal star polymers: models for studying dynamically arrested states in soft matter. J. Polym. Sci., Part B: Polym. Phys. 2004, 42, 2931–2941.

    Article  CAS  Google Scholar 

  22. Likos, C. N.; Löwen, H.; Watzlawek, M.; Abbas, B.; Jucknischke, O.; Allgaier, J.; Richter, D. Star polymers viewed as ultrasoft colloidal particles. Phys. Rev. Lett. 1998, 80, 4450–4453.

    Article  CAS  Google Scholar 

  23. Pan, D.; Sun, Z. Diffusion and relaxation dynamics of supercooled polymer melts. Chinese J. Polym. Sci. 2018, 36, 1187–1194.

    Article  CAS  Google Scholar 

  24. Grest, G. S.; Kremer, K.; Milner, S. T.; Witten, T. A. Relaxation of self-entangled many-arm star polymers. Macromolecules 1989, 22, 1904–1910.

    Article  CAS  Google Scholar 

  25. Pakula, T.; Vlassopoulos, D.; Fytas, G.; Roovers, J. Structure and dynamics of melts of multiarm polymer stars. Macromolecules 1998, 31, 8931–8940.

    Article  CAS  Google Scholar 

  26. Pakula, T. Static and dynamic properties of computer simulated melts of multiarm polymer stars. Comput. Theor. Polym. Sci. 1998, 8, 21–30.

    Article  CAS  Google Scholar 

  27. Singh, S. P.; Chatterji, A.; Gompper, G.; Winkler, R. G. Dynamical and rheological properties of ultrasoft colloids under shear flow. Macromolecules 2013, 46, 8026–8036.

    Article  CAS  Google Scholar 

  28. Xu, X.; Chen, J. Effect of functionality on unentangled star polymers at equilibrium and under shear flow. J. Chem. Phys. 2016, 144, 244905.

    Article  PubMed  CAS  Google Scholar 

  29. Yang, J.; Tang, X.; Tian, F.; Xu, T.; Xie, C.; Liu, G.; Xie, S.; Li, L. Stretching and orientation dynamics of linear and comb polymers at shear stress overshoot. J. Rheol. 2019, 63, 939–946.

    Article  CAS  Google Scholar 

  30. Gooneie, A.; Schuschnigg, S.; Holzer, C. Coupled orientation and stretching of chains in mesoscale models of polydisperse linear polymers in startup of steady shear flow simulations. Macromol. Theory Simul. 2016, 25, 170–186.

    Article  CAS  Google Scholar 

  31. McLeish, T. C. B.; Larson, R. G. Molecular constitutive equations for a class of branched polymers: the pom-pom polymer. J. Rheol. 1998, 42, 81–110.

    Article  CAS  Google Scholar 

  32. Chen, J.; Lu, L.; Zhao, H.; Yang, Y.; Shu, X.; Ran, Q. Conformational properties of comb-shaped polyelectrolytes with negatively charged backbone and neutral side chains studied by a generic coarse-grained bead-and-spring model. Chinese J. Polym. Sci. 2020, 38, 371–381.

    Article  CAS  Google Scholar 

  33. Mai, D. J.; Saadat, A.; Khomami, B.; Schroeder, C. M. Stretching dynamics of single comb polymers in extensional flow. Macromolecules 2018, 51, 1507–1517.

    Article  CAS  Google Scholar 

  34. Snijkers, F.; Vlassopoulos, D.; Lee, H.; Yang, J.; Chang, T.; Driva, P.; Hadjichristidis, N. Start-up and relaxation of well-characterized comb polymers in simple shear. J. Rheol. 2013, 57, 1079–1100.

    Article  CAS  Google Scholar 

  35. Snijkers, F.; Vlassopoulos, D.; Ianniruberto, G.; Marrucci, G.; Lee, H.; Yang, J.; Chang, T. Double stress overshoot in start-up of simple shear flow of entangled comb polymers. ACS Macro Lett. 2013, 2, 601–604.

    Article  CAS  PubMed  Google Scholar 

  36. Bacchelli, F. Rheological implications of the reduction in viscosity of SBR copolymers during mixing. KGK-Kautsch. Gummi Kunstst 2008, 61, 188–191.

    CAS  Google Scholar 

  37. Ahuja, A.; Potanin, A.; Joshi, Y. M. Two step yielding in soft materials. Adv. Colloid Interface Sci. 2020, 282, 102179.

    Article  CAS  PubMed  Google Scholar 

  38. Andrade, R. J. E.; Jacob, A. R.; Galindo-Rosales, F. J.; Campo-Deaño, L.; Huang, Q.; Hassager, O.; Petekidis, G. Dilatancy in dense suspensions of model hard-sphere-like colloids under shear and extensional flow. J. Rheol. 2020, 64, 1179–1196.

    Article  CAS  Google Scholar 

  39. Koumakis, N.; Laurati, M.; Egelhaaf, S. U.; Brady, J. F.; Petekidis, G. Yielding of hard-sphere glasses during start-up shear. Phys. Rev. Lett. 2012, 108, 098303.

    Article  CAS  PubMed  Google Scholar 

  40. Voigtmann, T. Nonlinear glassy rheology. Curr. Opin. Colloid Interface Sci. 2014, 19, 549–560.

    Article  CAS  Google Scholar 

  41. Zhang, H.; Yu, K.; Cayre, O. J.; Harbottle, D. Interfacial particle dynamics: one and two step yielding in colloidal glass. Langmuir 2016, 32, 13472–13481.

    Article  CAS  PubMed  Google Scholar 

  42. Zhou, Z.; Hollingsworth, J. V.; Hong, S.; Cheng, H.; Han, C. C. Yielding behavior in colloidal glasses: comparison between “hard cage” and “soft cage”. Langmuir 2014, 30, 5739–5746.

    Article  CAS  PubMed  Google Scholar 

  43. Grest, G. S.; Kremer, K.; Witten, T. A. Structure of many arm star polymers: a molecular dynamics simulation. Macromolecules 1987, 20, 1376–1383.

    Article  CAS  Google Scholar 

  44. Fu, C.; Sun, Z. A simple and effective boundary model in nonequilibrium molecular dynamics method. Chinese J. Polym. Sci. 2016, 34, 1150–1157.

    Article  CAS  Google Scholar 

  45. Kremer, K.; Grest, G. S.; Carmesin, I. Crossover from rouse to reptation dynamics: a molecular-dynamics simulation. Phys. Rev. Lett. 1988, 61, 566–569.

    Article  CAS  PubMed  Google Scholar 

  46. Larson, R. G.; Zhou, Q.; Shanbhag, S.; Park, S. J. Advances in modeling of polymer melt rheology. AICHEJ. 2007, 53, 542–548.

    Article  CAS  Google Scholar 

  47. Fedosov, D. A.; Singh, S. P.; Chatterji, A.; Winkler, R. G.; Gompper, G. Semidilute solutions of ultra-soft colloids under shear flow. Soft Matter 2012, 8, 4109–4120.

    Article  CAS  Google Scholar 

  48. Ripoll, M.; Winkler, R. G.; Gompper, G. Hydrodynamic screening of star polymers in shear flow. Eur. Phys. J. E 2007, 23, 349–354.

    Article  CAS  PubMed  Google Scholar 

  49. Lees, A. W.; Edwards, S. F. The computer study of transport processes under extreme conditions. J. Phys. C, Solid State Phy. 1972, 5, 1921–1928.

    Article  Google Scholar 

  50. Xu, X.; Chen, J.; An, L. Simulation studies on architecture dependence of unentangled polymer melts. J. Chem. Phys. 2015, 142, 074903.

    Article  PubMed  CAS  Google Scholar 

  51. Xu, X.; Chen, J.; An, L. Shear thinning behavior of linear polymer melts under shear flow via nonequilibrium molecular dynamics. J. Chem. Phys. 2014, 140, 174902.

    Article  PubMed  CAS  Google Scholar 

  52. Liu, A.; Liu, L.; Xu, W.; Xu, X.; Chen, J.; An, L. Stress-structure relationship of the reversible associating polymer network under start-up shear flow. Chinese J. Polym. Sci. 2021, 39, 387–396.

    Article  CAS  Google Scholar 

  53. Li, J.; Nie, Y.; Ma, Y.; Hu, W. Stress-induced polymer deformation in shear flows. Chinese J. Polym. Sci. 2013, 31, 1590–1598.

    Article  CAS  Google Scholar 

  54. Chen, J.; Jin, Z.; Yang, K. Three-dimensional numerical simulation of viscoelastic phase separation under shear: the roles of bulk and shear relaxation moduli. Chinese J. Polym. Sci. 2015, 33, 1562–1573.

    Article  CAS  Google Scholar 

  55. Liu, D.; Zhou, F.; Fang, K. A theoretical study on transitional shear flow behavior of the compressible and isothermal thermoplastic polymer. Chinese J. Polym. Sci. 2019, 37, 518–526.

    Article  CAS  Google Scholar 

  56. Yu, F.; Zhang, H.; Wang, Z.; Yu, W.; Zhou, C. Overshoots in stress and free energy change during the flow-induced crystallization of polymeric melt in shear flow. Chinese J. Polym. Sci. 2010, 38, 657–666.

    Article  CAS  Google Scholar 

  57. Yu, W.; Shen, G.; Zhou, X.; Li, M.; Zhang, Y.; Zhou, H.; Li, D. A constitutive model describing molecular configuration evolution and transient rheological behavior of entangled polymer solutions. Chinese J. Polym. Sci. 2021, 39, 1680–1694.

    Article  CAS  Google Scholar 

  58. Koumakis, N.; Brady, J. F.; Petekidis, G. Complex oscillatory yielding of model hard-sphere glasses. Phys. Rev. Lett. 2013, 110, 178301.

    Article  CAS  PubMed  Google Scholar 

  59. Altieri, A.; Urbani, P.; Zamponi, F. Microscopic theory of two-step yielding in attractive colloids. Phys. Rev. Lett. 2018, 121, 185503.

    Article  CAS  PubMed  Google Scholar 

  60. Joshi, R. G.; Tata, B. V. R. Sub-diffusive dynamics and two-step yielding in dense thermo-responsive microgel glasses. Colloid Polym. Sci. 2017, 295, 1671–1683.

    Article  CAS  Google Scholar 

  61. Kiyohito, K.; Keiji, M.; Tamotsu, Y.; Noriyuki, K.; Katsufumi, T. Yield process of electrorheological fluid with polyanil-ine particle. Mod. Phys. Lett. B 1994, 8, 1563–1575.

    Google Scholar 

  62. Hermes, M.; Clegg, P. S. Yielding and flow of concentrated Pickering emulsions. Soft Matter 2013, 9, 7568–7575.

    Article  CAS  Google Scholar 

  63. Moghimi, E.; Jacob, A. R.; Koumakis, N.; Petekidis, G. Colloidal gels tuned by oscillatory shear. Soft Matter 2017, 13, 2371–83.

    Article  CAS  PubMed  Google Scholar 

  64. Laurati, M.; Egelhaaf, S. U.; Petekidis, G. Nonlinear rheology of colloidal gels with intermediate volume fraction. J. Rheol. 2011, 55, 673–706.

    Article  CAS  Google Scholar 

  65. Wang, Z.; Lu, Y.; Jin, H.; Luo, C.; An, L. Diffusion of a ring threaded on a linear chain. Chinese J. Polym. Sci. 2020, 38, 1409–1417.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21873092, 21790341 and B040102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Lei Xu or Wen-Sheng Xu.

Additional information

Notes

The authors declare no competing financial interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, DD., Yu, KF., Xu, XL. et al. Molecular Dynamics Study of Star Polymer Melts under Start-up Shear. Chin J Polym Sci 40, 807–816 (2022). https://doi.org/10.1007/s10118-022-2700-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2700-x

Keywords

Navigation