Skip to main content

Advertisement

Log in

Synthesis and characterization of graphene oxide-molecularly imprinted polymer for Neopterin adsorption study

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Neopterin (NEO) is a useful biomarker for detection of malignant diseases. However, adsorption study using graphene oxide-molecularly imprinted polymer (GO-MIP) material has been lacking. The aim of this research was to synthesize and characterize GO-MIP for use in NEO adsorption study. GO-MIP with NEO as the template was synthesized via free radical polymerization method, with methacrylic acid (MAA) as the monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, ammonium persulfate (APS) as the initiator, and 8/2 v/v ratio of dimethylsulfoxide/acetonitrile (DMSO/ACN) solution as porogen solvent. The formation of GO-MIP hybrid with NEO binding sites was verified via Fourier transform infrared spectroscopy (FTIR), CHNS analysis, thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). GO-MIP adsorbed twice the amount of NEO compared to its non-imprinted counterpart, and showed good NEO selectivity when under the effect of analog compound 6-biopterin (BIO). The adsorption mechanism and kinetics were best described using Freundlich isotherm and Lagergren pseudo-second-order, respectively. The adsorption capacity at equilibrium was found to be 0.4749 mg/g with the adsorption parameters as described (10 mg GO-MIP, 1 mL NEO 10 ppm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abdel A, Adawy Z, Sayed M (2016) Role of neopterin among COPD patients. Egypt. J. Chest Dis. Tuberc. 65:23–27

    Article  Google Scholar 

  2. Anene A, Hosni K, Chevalier Y, Kalfat R, Hbaieb S (2016) Molecularly imprinted polymer for extraction of patulin in apple juice samples. Food Control. 70:90–95

    Article  CAS  Google Scholar 

  3. Arshady R, Mosbach K (1981) Synthesis of substrate-selective polymers by host-guest polymerization. Die Makromol. Chemie. 182:687–692

    Article  CAS  Google Scholar 

  4. Carey BS, Jain R, Adams CL, Wong KY, Shaw S, Tse WY, Kaminski ER (2013) Serum neopterin as an indicator of increased risk of renal allograft rejection. Transpl. Immunol. 28:81–85

    Article  CAS  Google Scholar 

  5. Cesur S, Aslan T, Hoca NT, Çimen F, Tarhan G, Çifçi A, Ceyhan I, Şipit T (2014) Clinical importance of serum neopterin level in patients with pulmonary tuberculosis. Int. J. Mycobacteriology. 3:5–8

    Article  Google Scholar 

  6. Cui P, Lee J, Hwang E, Lee H (2011) One-pot reduction of graphene oxide at subzero temperatures. Chem. Commun. 47:12370

    Article  CAS  Google Scholar 

  7. Duan F, Chen C, Wang G, Yang Y, Liu X, Qin Y (2014) Efficient adsorptive removal of dibenzothiophene by graphene oxide-based surface molecularly imprinted polymer. RSC Adv.

  8. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156

  9. Hamerlinck FFV (1999) Neopterin: a review. Exp. Dermatol. 8:167–176

    Article  CAS  Google Scholar 

  10. Haupt K, Linares AV, Bompart M, Tse B (2013) Molecularly imprinted polymers. TripleC. 11:13–35

    Google Scholar 

  11. Hausen A, Fuchs D, Grünewald K, Huber H, König K, Wechter H (1981) Urinary neopterine as marker for haematological neoplasias. Clin. Chim. Acta. 117:297–305

    Article  CAS  Google Scholar 

  12. Hemmati K, Sahraei R, Ghaemy M (2016) Synthesis and characterization of a novel magnetic molecularly imprinted polymer with incorporated graphene oxide for drug delivery. Polymer (Guildf). 101:257–268

    Article  CAS  Google Scholar 

  13. Hopkins FG (1889) Note on a yellow pigment in butterflies. Nature. 40:335

    Article  Google Scholar 

  14. Hu S-G, Li L, He X-W (2005) Solid-phase extraction of esculetin from the ash bark of Chinese traditional medicine by using molecularly imprinted polymers. J. Chromatogr. A. 1062:31–37

    Article  CAS  Google Scholar 

  15. Huber C, Batchelor JR, Fuchs D, Hausen A, Lang A, Niederwieser D, Reibnegger G, Swetly P, Troppmair J, Wachter H (1984) Immune response-associated production of neopterin. Release from macrophages primarily under control of interferon-gamma 160:310–316

    CAS  Google Scholar 

  16. C. Huber, D. Fuchs, A. Hausen, R. Margreiter, G. Reibnegger, M. Spielberger, H. Wachter, Pteridines as a new marker to detect human T cells activated by allogeneic or modified self major histocompatibility complex (MHC) determinants, 130 (1983) 1047–1050.

  17. Khan S, Bhatia T, Trivedi P, Satyanarayana GNV, Mandrah K, Saxena PN, Mudiam MKR, Roy SK (2016) Selective solid-phase extraction using molecularly imprinted polymer as a sorbent for the analysis of fenarimol in food samples. Food Chem. 199:870–875

    Article  CAS  Google Scholar 

  18. S. Khan, S. Hussain, A. Wong, M.V. Foguel, L. Moreira Gonçalves, M.I. Pividori Gurgo, M. del P. Taboada Sotomayor, Synthesis and characterization of magnetic-molecularly imprinted polymers for the HPLC-UV analysis of ametryn. React. Funct. Polym. (2017).

  19. C. Lee, X. Wei, J. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science (80-.). (2008).

  20. Lee S, Doong R (2012) Adsorption and selective recognition of 17ß-estradiol by molecularly imprinted polymers. J. Polym. Res. 19:9939

    Article  Google Scholar 

  21. Li W, Tang XZ, Zhang HB, Jiang ZG, Yu ZZ, Du XS, Mai YW (2011) Simultaneous surface functionalization and reduction of graphene oxide with octadecylamine for electrically conductive polystyrene composites. Carbon N. Y. 49:4724–4730

    Article  CAS  Google Scholar 

  22. Y. Li, X. Li, C. Dong, J. Qi, X. Han, A graphene oxide-based molecularly imprinted polymer platform for detecting endocrine disrupting chemicals. Carbon N. Y. (2010).

  23. Lyu Y, Jiang X, Dai W (2015) The roles of a novel inflammatory neopterin in subjects with coronary atherosclerotic heart disease. Int. Immunopharmacol. 24:169–172

    Article  CAS  Google Scholar 

  24. Mehmet Agilli HYTCISMOIAFNAYGKECEOA (2012) Comparison of two different HPLC methods and elisa method for measurement of serum neopterin. J. Investig. Biochem. 1:43–47

    Article  Google Scholar 

  25. Qiu H, Luo C, Sun M, Lu F, Fan L, Li X (2012) A chemiluminescence sensor for determination of epinephrine using graphene oxide–magnetite-molecularly imprinted polymers. Carbon N. Y.

  26. Razak MR, Yusof NA, Haron MJ, Ibrahim N, Mohammad F, Kamaruzaman S, Al-Lohedan HA (2018) Iminodiacetic acid modified kenaf fiber for waste water treatment. Int. J. Biol. Macromol. 112:754–760

    Article  CAS  Google Scholar 

  27. Schild HG (1993) Thermal Degradation of Poly (methacrylic acid): Further Studies Applying TGA/ FTlR. J. Polym. Sci. Part A Polym. Chem. 31:2403–2405

    Article  CAS  Google Scholar 

  28. Schniepp HC, Li J, Mcallister MJ, Sai H, Herrera-alonso M, Adamson DH, Prud RK, Car R, a Saville D (2006) I. a Aksay, Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. ACS Publ. 2:8535–8539

    Google Scholar 

  29. Sharma PS, Wojnarowicz A, Sosnowska M, Benincori T, Noworyta K, D’Souza F, Kutner W (2016) Potentiometric chemosensor for neopterin, a cancer biomarker, using an electrochemically synthesized molecularly imprinted polymer as the recognition unit. Biosens. Bioelectron. 77:565–572

    Article  CAS  Google Scholar 

  30. Del Sole R, Scardino A, Lazzoi MR, Mergola L, Scorrano S, Vasapollo G (2013) A molecularly imprinted polymer for the determination of neopterin. Microchim. Acta. 180:1401–1409

    Article  Google Scholar 

  31. Song X, Zhou T, Liu Q, Zhang M, Meng C, Li J, He L (2016) Molecularly imprinted solid-phase extraction for the determination of ten macrolide drugs residues in animal muscles by liquid chromatography–tandem mass spectrometry. Food Chem. 208:169–176

    Article  CAS  Google Scholar 

  32. Spivak DA (2005) Optimization, evaluation, and characterization of molecularly imprinted polymers. Adv. Drug Deliv. Rev. 57:1779–1794

    Article  CAS  Google Scholar 

  33. Sucher R, Schroecksnadel K, Weiss G, Margreiter R, Fuchs D, Brandacher G (2010) Neopterin, a prognostic marker in human malignancies. Cancer Lett. 287:13–22

    Article  CAS  Google Scholar 

  34. Sun S, Zhang M, Li Y, He X (2013) A molecularly imprinted polymer with incorporated graphene oxide for electrochemical determination of quercetin. Sensors.

  35. Wachter H, Hausen A, Grassmayr K (1979) Erhöhte Ausscheidung von Neopterin im Harn von Patienten mit malignen Tumoren und mit Viruserkrankungen. Hoppe Seylers Z Physiol Chem. 360:1957–1960

    CAS  PubMed  Google Scholar 

  36. Wang Z, Qiu T, Guo L, Ye J, He L, Li X (2017) The synthesis of hydrophilic molecularly imprinted polymer microspheres and their application for selective removal of bisphenol A from water. React. Funct. Polym. 116:69–76

    Article  CAS  Google Scholar 

  37. Wirleitner B, Schroecksnadel K, Winkler C, Fuchs D (2005) Neopterin in HIV-1 infection. Mol. Immunol. 42:183–194

    Article  CAS  Google Scholar 

  38. Wulff G, Knorr K (2001) Stoichiometric noncovalent interaction in molecular imprinting. Bioseparation. 10:257–276

    Article  CAS  Google Scholar 

  39. Xu L, Xu Z (2012) Molecularly imprinted polymer based on multiwalled carbon nanotubes for ribavirin recognition. J. Polym. Res. 19:9942

    Article  Google Scholar 

  40. Zeng H, Wang Y, Liu X, Kong J, Nie C (2012) Preparation of molecular imprinted polymers using bi-functional monomer and bi-crosslinker for solid-phase extraction of rutin. Talanta. 93:172–181

    Article  CAS  Google Scholar 

  41. Zeng Y, Zhou Y, Kong L, Zhou T, Shi G (2013) A novel composite of SiO 2-coated graphene oxide and molecularly imprinted polymers for electrochemical sensing dopamine. Biosens. Bioelectron.

  42. Zhu Y, Murali S, Cai W, Li X, Suk J (2010) Graphene and graphene oxide: synthesis, properties, and applications. Advanced.

Download references

Acknowledgements

This work was supported by the Research Management Centre of Universiti Putra Malaysia (9546800) and The Ministry of Higher Education of Malaysia (5524938).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sazlinda Kamaruzaman.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoo, W.C., Kamaruzaman, S., Lim, H.N. et al. Synthesis and characterization of graphene oxide-molecularly imprinted polymer for Neopterin adsorption study. J Polym Res 26, 184 (2019). https://doi.org/10.1007/s10965-019-1847-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1847-9

Keywords

Navigation