Skip to main content
Log in

A molecularly imprinted polymer for the determination of neopterin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A molecularly imprinted polymer (MIP) for the specific retention of neopterin has been developed. A set of 6 polymers was prepared by radical polymerization under different experimental condition using methacrylic acid as functional monomer and ethylene glycol dimethacrylate as crosslinker, with the aim to understand their influence on the efficiency of the MIP. The performance of each MIP was tested in batch experiments via their binding capacity. The MIP prepared in the presence of nickel ions in dimethylsulfoxide-acetonitrile mixture (P4) exhibited the highest binding capacity for neopterin (260 μmol per gram of polymer). A selectivity study with two other pteridines demonstrated the polymer P4 also to possess the best selectivity.

A molecularly imprinted polymer for the specific retention of neopterin was developed. A set of 6 polymers was prepared under different experimental condition. The performance of each MIP was tested through their binding capacity. The MIP P4 prepared in the presence of nickel ions exhibited the highest binding capacity

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wirleitner B, Schroecksnadel K, Winkler C, Fuchs D (2005) Neopterin in HIV-1 infection. Mol Immunol 42:183–194

    Article  CAS  Google Scholar 

  2. Sucher R, Schroecksnadel K, Weiss G, Margreiter R, Fuchs D, Brandacher G (2010) Neopterin, a prognostic marker in human malignancies. Cancer Lett 287:13–22

    Article  CAS  Google Scholar 

  3. Hamerlinck FFV (1999) Neopterin: a review. Exp Dermatol 8:167–176

    Article  CAS  Google Scholar 

  4. Beldowska A, Zwirska-Koeczala K (2001) Neopterin measurement in clinical diagnosis. J Clin Pharm Ther 26:319–329

    Article  Google Scholar 

  5. Mancha de Llanos A, Espinosa-Mansilla A, Cañada-Cañada F, de la Peña AM (2011) Separation and determination of 11 marker pteridines in human urine by liquid chromatography and fluorimetric detection. J Sep Sci 34:1283–1292

    Article  Google Scholar 

  6. Schroecksnadel K, Winkler C, Fuchs D (2006) Method for urinary neopterin measurements by HPLC. J Biochem Biophys Methods 66:99–100

    Article  CAS  Google Scholar 

  7. Culzoni MJ, Mancha de Llanos A, De Zan MM, Espinosa-Mansilla A, Cañada-Cañada F, Muñoz de la Peña A, Goicoechea HC (2011) Enhanced MCR-ALS modeling of HPLC with fast scan fluorimetric detection second-order data for quantitation of metabolic disorder marker pteridines in urine. Talanta 85:2368–2374

    Article  CAS  Google Scholar 

  8. Vasapollo G, Del Sole R, Mergola L, Lazzoi MR, Scardino A, Scorrano S, Mele G (2011) Molecularly imprinted polymers: present and future prospective. J Mol Sc 12:5908–5945

    Article  CAS  Google Scholar 

  9. Mayes AG (2005) A brief history of the “New Era” of molecular imprinting. In: Yan M, Ramstrom O (eds) Molecularly imprinted materials: Science and techonology. Marcel Dekker, New York, pp 13–24

    Google Scholar 

  10. Cormack PAG, Eloza AZ (2004) Molecularly imprinted polymers: synthesis and characterization. J Chromatogr B 804:173–182

    Article  CAS  Google Scholar 

  11. Bui BT, Haupt K (2010) Molecularly imprinted polymers: synthetic receptors in bioanalysis. Anal Bioanal Chem 398:2481–2492

    Article  CAS  Google Scholar 

  12. Del Sole R, De Luca A, Catalano M, Mele G, Vasapollo G (2007) Noncovalent imprinted microspheres: preparation, evaluation and selectivity of DBU template. J Appl Polym Sci 105:2190–2197

    Article  Google Scholar 

  13. Del Sole R, Lazzoi MR, Arnone M, Della Sala F, Cannoletta D, Vasapollo G (2009) Experimental and computational studies on non-covalent imprinted microspheres as recognition system for nicotinamide molecules. Molecules 14:2632–2649

    Article  Google Scholar 

  14. Del Sole R, Lazzoi MR, Vasapollo G (2010) Synthesis of nicotinamide-based molecularly imprinted microspheres and in vitro controlled release studies. Drug Deliv 17:1–8

    Article  Google Scholar 

  15. Del Sole R, Scardino A, Lazzoi MR, Vasapollo G (2011) Molecularly imprinted polymer for solid phase extraction of nicotinamide in pork liver samples. J Appl Polym Sci 120:1634–1641

    Article  Google Scholar 

  16. Scorrano S, Longo L, Vasapollo G (2010) Molecularly imprinted polymers for solid-phase extraction of 1-methyladenosine from human urine. Anal Chim Acta 659:167–171

    Article  CAS  Google Scholar 

  17. Scorrano S, Mergola L, Del Sole R, Vasapollo G (2011) Synthesis of molecularly imprinted polymers for amino acid derivates by using different functional monomers. Int J Mol Sci 12:1735–1743

    Article  CAS  Google Scholar 

  18. Mergola L, Scorrano S, Del Sole R, Lazzoi MR, Vasapollo G (2013) Developments in the synthesis of a water compatible molecularly imprinted polymer as artificial receptor for detection of 3-nitro-L-tyrosine in neurological diseases. Biosens Bioelectron 40:336–341

    Article  CAS  Google Scholar 

  19. Huang CY, Hsieh CH, Chen YL, Lee MH, Lin CF, Tsai HH, Juang YZ, Liu BD, Lin HY (2011) Portable potentiostatic sensor integrated with neopterin-imprinted poly(ethylene-co-vinyl alcohol)-based electrode. IET Nanobiotechnol 5:126–131

    Article  CAS  Google Scholar 

  20. Mosbach K, Ramström O (1996) The emerging technique of molecular imprinting and its future impact on biotechnology. Biotechnology 14:163–170

    Article  CAS  Google Scholar 

  21. Sellergren B (1998) Important considerations in the design of receptor sites using noncovalent imprinting. In: Bartsch R, Maeda M (eds) Molecular and ionic recognition with imprinted polymers. Oxford University Press, Washington, pp 49–80

    Chapter  Google Scholar 

  22. Prasada Rao T, Kala R, Daniel S (2006) Metal ion-imprinted polymers-novel materials for selective recognition of inorganics. Anal Chim Acta 578:105–116

    Article  Google Scholar 

  23. Otero-Romaní J, Moreda-Piñeiro A, Bermejo-Barrera P, Martin-Esteban A (2008) Synthesis, characterization and evaluation of ionic-imprinted polymers for solid-phase extraction of nickel from seawater. Anal Chim Acta 30:1–9

    Article  Google Scholar 

  24. Hart BR, Shea KJ (2001) Synthetic peptide receptors: molecularly imprinted polymers for the recognition of peptides using peptide-metal interactions. J Am Chem Soc 123:2072–2073

    Article  CAS  Google Scholar 

  25. Fan P, Wang B (2010) Regulatory effects of Zn(II) on the recognition properties of metal coordination imprinted polymers. J Appl Polym Sci 116:258–266

    Article  CAS  Google Scholar 

  26. Qu G, Zheng S, Liu Y, Xie W, Wu A, Zhang D (2009) Metal ion mediated synthesis of molecularly imprinted polymers targeting tetracyclines in aqueous samples. J Chromatogr B 877:3187–3193

    Article  CAS  Google Scholar 

  27. Monopoli VD, Thomas AH, Capparelli AL (2000) Kinetics and equilibrium study of nickel(II) complexation by pterin. Int J Chem Kinet 32:231–237

    Article  CAS  Google Scholar 

  28. Mitsumi M, Toyoda J, Nakasuji K (1995) Metal-pteridine complexes having three-dimensional hydrogen-bonded networks. Inorg Chem 34:3367–3370

    Article  CAS  Google Scholar 

  29. Kalabova H, Dvorak J, Hyspler R, Ticha A, Krcmova L, Urbanek L, Solichova D, Melichar B (2007) Urinary neopterin in patients treated with Gefitinib. Pteridines 18:95–100

    Article  CAS  Google Scholar 

  30. O’Mahony J, Molinelli A, Nolan K, Smytha MR, Mizaikoff B (2006) Anatomy of a successful imprint: analysing the recognition mechanisms of a molecularly imprinted polymer for quercetin. Biosens Bioelectron 21:1383–1392

    Google Scholar 

  31. Pichon V, Chapuis-Hugon F (2008) Role of molecularly imprinted polymers for selective determination of environmental pollutants—a review. Anal Chim Acta 622:48–61

    Article  CAS  Google Scholar 

  32. Liu F, Liu X, Ng SC, Chan SO (2006) Enantioselective molecular imprinting polymer coated QCM for the recognition of l-tryptophan. Sensors Actuators B Chem 113:234–240

    Article  CAS  Google Scholar 

  33. Morelli I, Chiono V, Vozzi G, Ciardelli G (2010) Molecularly imprinted submicronspheres for applications in a novel model biosensor-film. Sensors Actuat B Chem 150:394–401

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Del Sole.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 214 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Sole, R., Scardino, A., Lazzoi, M.R. et al. A molecularly imprinted polymer for the determination of neopterin. Microchim Acta 180, 1401–1409 (2013). https://doi.org/10.1007/s00604-013-0982-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-0982-y

Keywords

Navigation