Skip to main content
Log in

Compatibilising action of multiwalled carbon nanotubes in polycarbonate/polypropylene (PC/PP) blends: phase morphology, viscoelastic phase separation, rheology and percolation

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Multiwalled carbon nanotubes were introduced into both dispersed and co-continuous polycarbonate/polypropylene blends through melt compounding in an internal mixer. Both the neat blends and blend nanocomposites showed viscoelastic phase separation process where phase in phase morphologies could be observed due to viscosity disparity and Tg differences between the component polymers. A strong compatibilising action was noticed up on the addition of a small quantity of MWCNT into both dispersed and co-continuous morphologies. Theoretical predictions based on thermodynamic considerations clearly indicated the preferential localisation of MWCNTs in the PC phase. However, because of the viscosity differences between the two polymers, we also found that some of the MWCNTs being localised at the blend interphase and in PP phase. From linear viscoelastic studies rheological percolation was observed at high concentration of the MWCNTs where carbon nanotubes formed a network-like structure leading to solid state behaviour at low frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Utracki LA (1982) Economics of polymer blends. Polym Eng Sci 22:1166–1175

    Article  Google Scholar 

  2. Utracki LA (1999) Polymer blends: fundamentals. Polypropylene, Polymer Sc. Springer, pp 601–605

  3. Paul DR, Barlow JW (1980) Polymer blends. J Macromol Sci Macromol Chem 18:109–168

    Article  Google Scholar 

  4. Machado JM, Lee CS (1994) Compatibilization of immiscible blends with a mutually miscible third polymer. Polym Eng Sci 34:59–68

    Article  CAS  Google Scholar 

  5. Uemura T, Kaseda T, Sasaki Y, Inukai M, Toriyama T, Takahara A, Jinnai H, Kitagawa S (2015) Mixing of immiscible polymers using nanoporous coordination templates. Nat Commun 6:7473

    Article  PubMed  Google Scholar 

  6. Galloway JA, Koester KJ, Paasch BJ, Macosko CW (2004) Effect of sample size on solvent extraction for detecting cocontinuity in polymer blends. Polymer 45:423–428

    Article  CAS  Google Scholar 

  7. Castro M, Carrot C, Prochazka F (2004) Experimental and theoretical description of low frequency viscoelastic behaviour in immiscible polymer blends. Polymer 45:4095–4104

    Article  CAS  Google Scholar 

  8. Huang S, Bai L, Trifkovic M, Cheng X, Macosko CW (2016) Controlling the morphology of immiscible cocontinuous polymer blends via silica nanoparticles jammed at the interface. Macromolecules 49:3911–3918

    Article  CAS  Google Scholar 

  9. Altobelli R, de Luna MS, Causa A et al (2016) Morphology stabilization of co-continuous polymer blends through clay nanoparticles. AIP conference proceedings. AIP Publishing, 20057

  10. Li L, Miesch C, Sudeep PK, Balazs AC, Emrick T, Russell TP, Hayward RC (2011) Kinetically trapped co-continuous polymer morphologies through intraphase gelation of nanoparticles. Nano Lett 11:1997–2003

    Article  CAS  PubMed  Google Scholar 

  11. Popov VN (2004) Carbon nanotubes: properties and application. Mater Sci Eng R Reports 43:61–102

    Article  CAS  Google Scholar 

  12. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  13. Tao F, Auhl D, Baudouin A et al (2013) Influence of multiwall carbon nanotubes trapped at the interface of an immiscible polymer blend on interfacial tension. Macromol Chem Phys 214:350–360

    Article  CAS  Google Scholar 

  14. Mamunya Y, Levchenko V, Boiteux G, Seytre G, Zanoaga M, Tanasa F, Lebedev E (2016) Controlling morphology, electrical, and mechanical properties of polymer blends by heterogeneous distribution of carbon nanotubes. Polym Compos 37:2467–2477

    Article  CAS  Google Scholar 

  15. Pradhan B, Setyowati K, Liu H, Waldeck DH, Chen J (2008) Carbon nanotube− polymer nanocomposite infrared sensor. Nano Lett 8:1142–1146

    Article  CAS  PubMed  Google Scholar 

  16. Njuguna J, Pielichowski K (2003) Polymer nanocomposites for aerospace applications: properties. Adv Eng Mater 5:769–778

    Article  CAS  Google Scholar 

  17. Singh BP, Saini P, Gupta T et al (2011) Designing of multiwalled carbon nanotubes reinforced low density polyethylene nanocomposites for suppression of electromagnetic radiation. J Nanopart Res 13:7065–7074

    Article  CAS  Google Scholar 

  18. Poothanari MA, Abraham J, Kalarikkal N, Thomas S (2018) Excellent electromagnetic interference shielding and high electrical conductivity of Compatibilized polycarbonate/polypropylene carbon nanotube blend nanocomposites. Ind Eng Chem Res 57:4287–4297

    Article  CAS  Google Scholar 

  19. Botelho EC, Costa ML, Braga CI, Burkhart T, Lauke B (2013) Viscoelastic behavior of multiwalled carbon nanotubes into phenolic resin. Mater Res 16:713–720

    Article  CAS  Google Scholar 

  20. Cassagnau P (2013) Linear viscoelasticity and dynamics of suspensions and molten polymers filled with nanoparticles of different aspect ratios. Polymer 54:4762–4775

    Article  CAS  Google Scholar 

  21. Pötschke P, Pegel S, Claes M, Bonduel D (2008) A novel strategy to incorporate carbon nanotubes into thermoplastic matrices. Macromol Rapid Commun 29:244–251

    Article  CAS  Google Scholar 

  22. Koysuren O, Yesil S, Bayram G (2010) Effect of solid state grinding on properties of PP/PET blends and their composites with carbon nanotubes. J Appl Polym Sci 118:3041–3048

    Article  CAS  Google Scholar 

  23. Liebscher M, Tzounis L, Pötschke P, Heinrich G (2013) Influence of the viscosity ratio in PC/SAN blends filled with MWCNTs on the morphological, electrical, and melt rheological properties. Polymer 54:6801–6808

    Article  CAS  Google Scholar 

  24. Wu D, Zhang Y, Zhang M, Yu W (2009) Selective localization of multiwalled carbon nanotubes in poly(epsilon-caprolactone)/polylactide blend. Biomacromolecules 10:417–424

    Article  CAS  PubMed  Google Scholar 

  25. Cardinaud R, McNally T (2013) Localization of MWCNTs in PET/LDPE blends. Eur Polym J 49:1287–1297

    Article  CAS  Google Scholar 

  26. Abbasi Moud A, Javadi A, Nazockdast H, Fathi A, Altstaedt V (2015) Effect of dispersion and selective localization of carbon nanotubes on rheology and electrical conductivity of polyamide 6 (PA6), polypropylene (PP), and PA6/PP nanocomposites. J Polym Sci Part B Polym Phys 53:368–378

    Article  CAS  Google Scholar 

  27. Du F, Scogna RC, Zhou W et al (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37:9048–9055

    Article  CAS  Google Scholar 

  28. Mohammed Arif P, Sarathchandran C, Narayanan A, Saiter A, Terzano R, Allegretta I, Porfido C, Kalarikkal N, Thomas S (2017) Multiwalled carbon nanotube promotes crystallisation while preserving co-continuous phase morphology of polycarbonate/polypropylene blend. Polym Test 64:1–11

    Article  CAS  Google Scholar 

  29. Favis B, Chalifoux J (1988) Influence of composition on the morphology of polypropylene/polycarbonate blends. Polymer 29:1761–1767

    Article  CAS  Google Scholar 

  30. Zhihui Y, Yajie Z, Xiaomin Z, Jinghua Y (1998) Effects of the compatibilizer PP-g-GMA on morphology and mechanical properties of PP/PC blends. Polymer 39:547–551

    Article  Google Scholar 

  31. Xu Y, Sun Z, Chen X, Chen M, Hu S, Zhang Z (2013) Mechanical properties and crystallization behavior of polycarbonate/polypropylene blends. J Macromol Sci Part B 52:716–725

    Article  CAS  Google Scholar 

  32. Babu RR, Singha NK, Naskar K (2011) Phase morphology and melt rheological behavior of uncrosslinked and dynamically crosslinked polyolefin blends: role of macromolecular structure. Polym Bull 66:95–118

    Article  CAS  Google Scholar 

  33. Shi W, Chen F, Zhang Y, Han CC (2012) Viscoelastic phase separation and interface assisted crystallization in a highly immiscible iPP/PMMA blend. ACS Macro Lett 1:1086–1089

    Article  CAS  PubMed  Google Scholar 

  34. Paukszta D, Garbarczyk J, Sterzyński T (1995) Structure of polypropylene/polycarbonate blends crystallized under pressure. Polymer 36:1309–1313

    Article  CAS  Google Scholar 

  35. Chandran N, Chandran S, Maria HJ, Thomas S (2015) Compatibilizing action and localization of clay in a polypropylene/natural rubber (PP/NR) blend. RSC Adv 5:86265–86273

    Article  CAS  Google Scholar 

  36. Wu S (1987) Formation of dispersed phase in incompatible polymer blends: interfacial and rheological effects. Polym Eng Sci 27:335–343

    Article  CAS  Google Scholar 

  37. Galloway JA, Macosko CW (2004) Comparison of methods for the detection of cocontinuity in poly (ethylene oxide)/polystyrene blends. Polym Eng Sci 44:714–727

    Article  CAS  Google Scholar 

  38. Li C, Tian G, Zhang Y, Zhang Y (2002) Crystallization behavior of polypropylene/polycarbonate blends. Polym Test 21:919–926

    Article  CAS  Google Scholar 

  39. Filippone G, Dintcheva NT, La Mantia FP, Acierno D (2010) Using organoclay to promote morphology refinement and co-continuity in high-density polyethylene/polyamide 6 blends–effect of filler content and polymer matrix composition. Polymer 51:3956–3965

    Article  CAS  Google Scholar 

  40. Bose S, Bhattacharyya AR, Khare RA, Kulkarni AR, Umasankar Patro T, Sivaraman P (2008) Tuning the dispersion of multiwall carbon nanotubes in co-continuous polymer blends: a generic approach. Nanotechnology 19:335704

    Article  PubMed  CAS  Google Scholar 

  41. Parpaite T, Otazaghine B, Taguet A, Sonnier R, Caro AS, Lopez-Cuesta JM (2014) Incorporation of modified Stöber silica nanoparticles in polystyrene/polyamide-6 blends: coalescence inhibition and modification of the thermal degradation via controlled dispersion at the interface. Polymer 55:2704–2715

    Article  CAS  Google Scholar 

  42. Chow WS, Ishak ZA (2015) Polyamide blend-based nanocomposites: a review. Express Polym Lett 9:211–232

    Article  CAS  Google Scholar 

  43. Zhang L, Wan C, Zhang Y (2009) Morphology and electrical properties of polyamide 6/polypropylene/multi-walled carbon nanotubes composites. Compos Sci Technol 69:2212–2217

    Article  CAS  Google Scholar 

  44. Liu X-Q, Yang W, Xie B-H, Yang M-B (2012) Influence of multiwall carbon nanotubes on the morphology, melting, crystallization and mechanical properties of polyamide 6/acrylonitrile–butadiene–styrene blends. Mater Des 34:355–362

    Article  CAS  Google Scholar 

  45. Zhou J, Min BG (2013) Interfacial localization of multiwalled carbon nanotubes in immiscible blend of poly (ethylene terephthalate)/polyamide 6. Fibers Polym 14:518–524

    Article  CAS  Google Scholar 

  46. Solid surface energy data (SFE) for common polymers. In: http://www.surfacetension.de/solid-surface-energy.htm (Accessed: 25.02.2016)

  47. Nuriel S, Liu L, Barber AH, Wagner HD (2005) Direct measurement of multiwall nanotube surface tension. Chem Phys Lett 404:263–266

    Article  CAS  Google Scholar 

  48. Barber AH, Cohen SR, Wagner HD (2004) Static and dynamic wetting measurements of single carbon nanotubes. Phys Rev Lett 92:186103

    Article  PubMed  CAS  Google Scholar 

  49. Nair ST, Vijayan PP, Xavier P et al (2015) Selective localisation of multi walled carbon nanotubes in polypropylene/natural rubber blends to reduce the percolation threshold. Compos Sci Technol 116:9–17

    Article  CAS  Google Scholar 

  50. Favis BD, Le Corroller P Polymeric material and process for recycling plastic blends. US 9,670,344

  51. Feng J, Chan C, Li J (2003) A method to control the dispersion of carbon black in an immiscible polymer blend. Polym Eng Sci 43:1058–1063

    Article  CAS  Google Scholar 

  52. Guo C, Zhou L, Lv J (2013) Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polym Polym Compos 21:449–456

    CAS  Google Scholar 

  53. Vo L, Giannelis E (2007) Compatibilizing poly (vinylidene fluoride)/nylon-6 blends with nanoclay. Macromolecules 40:8271–8276

    Article  CAS  Google Scholar 

  54. Zhao X, Zhao J, Cao J-P, Wang X, Chen M, Dang ZM (2013) Tuning the dielectric properties of polystyrene/poly (vinylidene fluoride) blends by selectively localizing carbon black nanoparticles. J Phys Chem B 117:2505–2515

    Article  CAS  PubMed  Google Scholar 

  55. Weis C, Leukel J, Borkenstein K, Maier D, Gronski W, Friedrich C, Honerkamp J (1998) Morphological and rheological detection of the phase inversion of PMMA/PS polymer blends. Polym Bull 40:235–241

    Article  Google Scholar 

  56. Vinckier I, Laun HM (1999) Manifestation of phase separation processes in oscillatory shear: droplet-matrix systems versus co-continuous morphologies. Rheol Acta 38:274–286

    Article  CAS  Google Scholar 

  57. López-Barrón CR, Macosko CW (2012) Rheological and morphological study of cocontinuous polymer blends during coarsening. J Rheol 56:1315–1334

    Article  CAS  Google Scholar 

  58. Li R, Yu W, Zhou C (2006) Rheological characterization of droplet-matrix versus co-continuous morphology. J Macromol Sci Part B 45:889–898

    Article  CAS  Google Scholar 

  59. Bianchi O, Zattera AJ, Canto LB (2010) Dynamic vulcanization of hdpe/eva blend using silane. J Elastomers Plast 42:561–575

    Article  CAS  Google Scholar 

  60. Salehiyan R, Ray SS, Bandyopadhyay J, Ojijo V (2017) The distribution of nanoclay particles at the interface and their influence on the microstructure development and rheological properties of reactively processed biodegradable polylactide/poly(butylene succinate) blend nanocomposites. Polymers 9:350

    Article  PubMed Central  CAS  Google Scholar 

  61. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205

    Article  CAS  Google Scholar 

  62. Freeman GM, Marshall Jr CJ, Lackey WO, Onizawa M (2001) Hydrous clay slurry mixture containing a silane-treated clay. US 6,197,105

  63. Rostami A, Masoomi M, Fayazi MJ, Vahdati M (2015) Role of multiwalled carbon nanotubes (MWCNTs) on rheological, thermal and electrical properties of PC/ABS blend. RSC Adv 5:32880–32890

    Article  CAS  Google Scholar 

  64. Kasgoz A, Akın D, Durmus A (2012) Rheological behavior of cycloolefin copolymer/graphite composites. Polym Eng Sci 52:2645–2653

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is funded by Ministry of Electronics and Information Technology-MeitY (F. No. 1(2)/2012-EMCD), Govt. of India, New Delhi. The authors also would like to acknowledge the financial support from DST-Nanomision – Govt. of India and UGC – Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabu Thomas.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poothanari, M.A., Xavier, P., Bose, S. et al. Compatibilising action of multiwalled carbon nanotubes in polycarbonate/polypropylene (PC/PP) blends: phase morphology, viscoelastic phase separation, rheology and percolation. J Polym Res 26, 178 (2019). https://doi.org/10.1007/s10965-019-1833-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1833-2

Keywords

Navigation