Skip to main content
Log in

Glycidyl methacrylate-based copolymers as new compatibilizers for polypropylene/ polyethylene terephthalate blends

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The improvement of flexural properties of polypropylene (PP) could be achieved by blending it with a stiffer polymer like poly(ethylene terephthalate) (PET). The main problem is the compatibilization between a saturated, apolar structure with a polar polyester. Copolymers of glycidyl methacrylate (GMA) and 2-ethylhexyl acrylate (EHA) were prepared, characterized and used as compatibilizers in PP/PET (70/30 wt%) blends at different feed ratios. The effects of compatibilization of these polymers were analyzed by SEM, which shows reduction of the size of PET granules, and by TGA, with an increase in the thermal stability of the compatibilized blends. Thermal properties corresponding to melting and crystallization events were also changed by the introduction of the compatibilizers. The DMTA shows that the Tg of the PET domain is affected by compatibilization, contrary to the Tg of PP domain. The compatibilization efficiency was further confirmed by an increase in flexural strain at flexural strength (εFM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Van Bruggen EPA, Koster RP, Picken SJ, Ragaert K (2016) Influence of processing parameters and composition on the effective Compatibilization of polypropylene–poly(ethylene terephthalate) blends. Int Polym Process 31(2):179–187

    Article  Google Scholar 

  2. Champagne MF, Huneault MA, Roux C, Peyrel W (1999) Reactive compatibilization of polypropylene/polyethylene terephthalate blends. Polym Eng Sci 39(6):976–984

    Article  CAS  Google Scholar 

  3. Gnatowski A, Koszkul J (2005) Investigations of the influence of compatibilizer and filler type on the properties of chosen polymer blends. J Mater Process Technol 162–163:52–58

    Article  Google Scholar 

  4. Inuwa IM, Hassan A, Samsudin SA, Haafiz MKM, Jawaid M (2017) Interface modification of compatibilized polyethylene terephthalate/polypropylene blends: effect of compatibilization on thermomechanical properties and thermal stability. J Vinyl Addit Technol 23(1):45–54

    Article  CAS  Google Scholar 

  5. Abdul Razak NC, Inuwa IM, Hassan A, Samsudin SA (2013) Effects of compatibilizers on mechanical properties of PET/PP blend. Compos Interfaces 20(7):507–515

    Article  CAS  Google Scholar 

  6. Oswald HJ, Turi E (1965) The deterioration of polypropylene by oxidative degradation. Polym Eng Sci 5(3):152–158

    Article  CAS  Google Scholar 

  7. Maier C, Calafut T (1998) Polypropylene: the definitive User's guide and Databook. William Andrew Inc, New York

    Google Scholar 

  8. Schoolenberg GE, Vink P (1991) Ultra-violet degradation of polypropylene: 1. Degradation profile and thickness of the embrittled surface layer. Polymer 32(3):432–437

    Article  CAS  Google Scholar 

  9. Xanthos M, Young MW, Biesenberger JA (1990) Polypropylene/polyethylene terephthalate blends compatibilized through functionalization. Polym Eng Sci 30(6):355–365

    Article  CAS  Google Scholar 

  10. White JL, Yang J (2008) In: Domasius N., thein K. (eds) polyolefin blends. Wiley, New York

    Google Scholar 

  11. Cheung MK, Chan D (1999) Mechanical and rheological properties of poly(ethylene terephthalate)/ polypropylene blends. Polym Int 43(3):281–287

    Article  Google Scholar 

  12. Barlow JW, Paul DR (1984) Mechanical compatibilization of immiscible blends. Polym Eng Sci 24(8):525–534

    Article  CAS  Google Scholar 

  13. Santos P, Pezzin SH (2003) Mechanical properties of polypropylene reinforced with recycled-PET fibres. J Mater Process Technol 143–144:517–520

    Article  Google Scholar 

  14. Heino M, Kirjava J, Hietaoja P, Seppa J (1997) Compatibilization of polyethylene terephthalate / polypropylene blends with styrene – ethylene / butylene – styrene (SEBS) block copolymers. J Appl Polym Sci 65(2):241–249

    Article  CAS  Google Scholar 

  15. Moad G (1999) The synthesis of polyolefin graft copolymers by reactive extrusion. Prog Polym Sci 24(1):81–142

    Article  CAS  Google Scholar 

  16. Ciardelli F, Aglietto M, Coltelli M, Passaglia E, Giacomo R, Coiai S (2004) In: Ciardelli F., Penczek S. (eds) Modification and Blending of Synthetic and Natural Macromolecules. Kluwer Academic Publ, Pisa

  17. Amanizadeh F, Naderi A, Jarestani Y, Kaptan N (2014) Rheologically determined phase behavior and miscibility of reactively compatibilized poly(ethylene terephthalate)/polypropylene blends. Polym Bull 71(6):1315–1329

    Article  CAS  Google Scholar 

  18. Papadopoulou CP, Kalfoglou NK (2000) Comparison of compatibilizer effectiveness for PET/PP blends: their mechanical, thermal and morphology characterization. Polymer 41(7):2543–2555

    Article  CAS  Google Scholar 

  19. Pang YX, Jia DM, Hu HJ, Hourston DJ, Song M (2000) Effects of a compatibilizing agent on the morphology, interface and mechanical behaviour of polypropylene / poly (ethylene terephthalate) blends. Polymer 41(1):357–365

    Article  CAS  Google Scholar 

  20. Chiu HT, Hsiao YK (2006) Compatibilization of of poly (ethylene terephthalate)/ polypropylene blends with maleic anhydride grafted polyethylene-octene elastomer. J Polym Res 13(2):153–160

    Article  CAS  Google Scholar 

  21. Wang Y, Run M (2009) Non-isothermal crystallization kinetic and compatibility of PTT/PP blends by using maleic anhydride grafted polypropylene as compatibilizer. J Polym Res 16:725–737

    Article  CAS  Google Scholar 

  22. Jazani OM, Rastin H, Formela K, Hejna A, Shahbazi M, Farkiani B, Saeb MR (2017) An investigation on the role of GMA grafting degree on the efficiency of PET/PP-g-GMA reactive blending: morphology and mechanical properties. Polym Bull 74:4483–4497. https://doi.org/10.1007/s00289-017-1962-x

    Article  CAS  Google Scholar 

  23. Jerenec S, Šimić M, Savnik A, Podgornik A, Kolar M, Turnšek M, Krajnc P (2014) Glycidyl methacrylate and ethylhexyl acrylate based polyHIPE monoliths: morphological, mechanical and chromatographic properties. React Funct Polym 78:32–37

    Article  CAS  Google Scholar 

  24. Haloi DJ, Roy S, Singha NK (2009) Copper catalyzed atom transfer radical copolymerization of glycidyl methacrylate and 2-ethylhexyl acrylate. J Polym Sci Part A Polym Chem 47:6536–6533

    Article  Google Scholar 

  25. Khelifa F, Habibi Y, Bénard F, Dubois P (2012) Effect of cellulosic nanowhiskers on the performances of epoxidized acrylic copolymers. J Mater Chem 22:20520–20528

    Article  CAS  Google Scholar 

  26. Khelifa F, Druart ME, Habibi Y, Bénard F, Leclère P, Olivier M, Dubois P (2013) Sol–gel incorporation of silica nanofillers for tuning the anti-corrosion protection of acrylate-based coatings. Prog Org Coatings 76(5):900–911

    Article  CAS  Google Scholar 

  27. Daniel H, Pavlo S (2000) Reactive poly(glycidyl methacrylate) microspheres prepared by dispersion polymerization. J Polym Sci Part A Polym Chem 38(21):3855–3863

    Article  Google Scholar 

  28. Vidts KRM, Dervaux B, Du Prez FE (2006) Block, blocky gradient and random copolymers of 2-ethylhexyl acrylate and acrylic acid by atom transfer radical polymerization. Polymer 47(17):6028–6037

    Article  CAS  Google Scholar 

  29. Dhal PK, Ramakrishna MS, Babu GN (1982) Copolymerization of glycidyl methacrylate with alkyl acrylate monomers. J Polym Sci Part A Polym Chem 20(6):1581–1585

    Article  CAS  Google Scholar 

  30. Tsai CH, Chang FC (1996) Polymer blends of PBT and PP Compatibilized by ethylene-co-glycidyl methacrylate copolymers. J Appl Polym Sci 61(2):321–332

    Article  CAS  Google Scholar 

  31. Souza AMC, Caldeira CB (2015) An investigation on recycled PET/PP and recycled PET/PP-EP compatibilized blends: Rheological,morphological, and mechanical properties. J App Polym Sci 132:41892

    Article  Google Scholar 

  32. Wang X, Yu W, Nie Q, Guo Y, Du J (2011) A real-time study on the evolution of the degradation of polypropylene during mixing process. J App Polym Sci 121:1220–1243

    Article  CAS  Google Scholar 

  33. Duarte IS, Tavares AA, Lima PS, Andrade DLACS, Carvalho LH, Canedo EL, Silva SML (2016) Chain extension of virgin and recycled poly(ethylene terephthalate): effect of processing conditions and reprocessing. Polym Degrad Stab 124:26–34

    Article  CAS  Google Scholar 

  34. Luongo JP (1960) Infrared study of polypropylene. J Appl Polym Sci 3(9):302–309

    Article  CAS  Google Scholar 

  35. Miyake A (1959) The infrared spectrum of polyethylene terephthalate. I the effect of crystallization. J Polym Sci 38(134):479–495

    Article  CAS  Google Scholar 

  36. Daniels WW, Kitson RE (1958) Infrared spectroscopy of polyethylene terephthalate. J Polym Sci 33(126):161–170

    Article  CAS  Google Scholar 

  37. Erol I, Poyraz B, Koroglu MA, Cifci C (2009) Copolymerization of 2-methyl-N-1,3-thiazole-2-ylacrilamide with glycidyl methacrylate:synthesis, characterization, reactivity ratios and biological activity. J Polym Res 16(1):19–28

    Article  CAS  Google Scholar 

  38. Kalfoglou NK, Skafidas DS, Kallitsis J, Lambert JC, Stappen LV (1995) Comparison of compatibilizer effectiveness for PET/HDPE blends. Polymer 26(23):4453–4462

    Article  Google Scholar 

  39. Berti C, Bonora V, Colonna M, Lotti N, Sisti L (2003) Effect of carboxyl end groups content on the thermal and electrical properties of poly(propylene terephthalate). Eur Polym J 39(8):1595–1601

    Article  CAS  Google Scholar 

  40. Jabarin SA, Lofgren EA (1984) Thermal stability of polyethylene terephthalate. Polym Eng Sci 24(13):1056–1063

    Article  Google Scholar 

  41. Al-AbdulRazzak S, Jabarin SA (2002) Processing characteristics of poly(ethylene terephthalate): hydrolytic and thermal degradation. Polym Int 51(2):164–173

    Article  CAS  Google Scholar 

  42. Zhu Y, Liang C, Bo Y (2015) Non-isothermal crystallization behavior of compatibilized polypropylene / recycled polyethylene terephthalate blends. J Therm Anal Calorim 119(3):2005–2013

    Article  CAS  Google Scholar 

  43. Zhu Y, Liang C, Bo Y, Xu S (2015) Compatibilization of polypropylene/recycled polyethylene terephthalate blends with maleic anhydride grafted polypropylene in the presence of diallyl phthalate. J Polym Res 22:35

    Article  Google Scholar 

  44. Inoya H, Leong YW, Klinklai W, Thumsorn S, Makata Y, Hamada H (2011) Compatibilization of recycled poly(ethylene terephthalate) and polypropylene blends: effect of polypropylene molecular weight on homogeneity and compatibility. J Appl Polym Sci 124(5):3947–3955

    Article  Google Scholar 

  45. Kunimune N, Yamada K, Leong YW, Thumsorn S, Hamada H (2010) Influence of the reactive processing of recycled poly(ethylene terephthalate)/poly(ethylene-co-glycidyl methacrylate) blends. J Appl Polym Sci 120(1):50–55

    Article  Google Scholar 

  46. Jayanarayanan K, Thomas S, Joseph K (2011) In situ microfibrillar blends and composites of polypropylene and poly (ethylene terephthalate): morphology and thermal properties. J Polym Res 18(1):1–11

    Article  CAS  Google Scholar 

  47. Coelho JFJ, Carreira M, Popov AV, Gonçalves PMOF, Gil MH (2006) Thermal and mechanical characterization of poly(vinyl chloride)-b-poly(butyl acrylate)-b-poly(vinyl chloride) obtained by single electron transfer – degenerative chain transfer living radical polymerization in water. Eur Polym J 42(10):2313–2319

    Article  CAS  Google Scholar 

  48. Coelho JFJ, Carreira M, Gonçalves PMOF, Popov AV, Gil MH (2006) Processability and characterization of poly(vinyl chloride)-b-poly(n-butyl acrylate)-b-poly(vinyl chloride) prepared by living radical polymerization of vinyl chloride. Comparison with a flexible commercial resin formulation prepared with PVC and dioctyl phthalate. J Vinyl Addit Technol 12(4):156–165

    Article  CAS  Google Scholar 

  49. Schlesing W, Buhk M, Osterhold M (2004) Dynamic mechanical analysis in coatings industry. Prog Org Coatings 49(3):197–208

    Article  CAS  Google Scholar 

  50. Yasaku W, Yasuko H, Ryuji S (1968) Glass transition and relaxation in the amorphous phase of isotactic polypropylene. J Polym Sci Part C Polym Symp 23(2):583–595

    Google Scholar 

  51. Inoya H, Leong YW, Klinklai W, Takai Y, Hamada H (2012) Compatibilization of recycled poly(ethylene terephthalate) and polypropylene blends: effect of compatibilization on blend toughness, dispersion of minor phase and thermal stability. J Appl Polym Sci 124:5260–5269

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge project Flexmodulo, POCI-01-0247-FEDER-003362 for financial support. The 1H NMR data was collected at the UC-NMR facility which is supported in part by FEDER –European Regional Development Fund through the COMPETE Programme (Operational Programme for Competitiveness) and by National Funds through FCT – Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through grants REEQ/481/QUI/2006, RECI/QEQ-QFI/0168/2012, CENTRO-07-CT62-FEDER-002012, and Rede Nacional de Ressonância Magnética Nuclear (RNRMN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arménio C. Serra.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 7415 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, M.S., Matias, Á.A., Costa, J.R.C. et al. Glycidyl methacrylate-based copolymers as new compatibilizers for polypropylene/ polyethylene terephthalate blends. J Polym Res 26, 127 (2019). https://doi.org/10.1007/s10965-019-1784-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1784-7

Keywords

Navigation