Skip to main content
Log in

Novel polySchiff base containing naphthyl: synthesis, characterization, optical properties and surface morphology

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In the present work, a Schiff base was obtained from reaction of 1-naphthylamine with salicylaldehyde and its polymer (poly(NIMP)) was synthesized via oxidative polycondensation. The characterizations of the synthesized Schiff base and poly(NIMP) were determined by 1H NMR, 13C NMR, FT-IR, GPC and TGA techniques. The film of synthesized poly(NIMP) was prepared. The film thickness was found to be 106 μm. The optical band gap (Eg) values of the film were determined by UV-vis spectroscopy. Direct, indirect and forbidden indirect band gap (Egd, Egid and Egfid) values of the film were found as 1.698, 1.223 and 1.461 eV, respectively. Surface properties of the film were investigated by Atomic force microscope (AFM). In the AFM results, the average surface roughness and average square root roughness were obtained as 2.46 and 3.79 nm, respectively. A negative skewness value exhibited dominant valleys while the high kurtosis value exhibited spiky features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Grigoras M, Catanescu CO (2004) Imine oligomers and polymers. J Macromol Sci Part C: Polym Rev 44(2):131–173

    Article  CAS  Google Scholar 

  2. Dineshkumar S, Muthusamy A (2016) Synthesis and spectral characterization of cross linked rigid structured Schiff base polymers: effect of substituent position changes on optical, electrical, and thermal properties. Polym Plast Technol Eng 55(4):368–378

    Article  CAS  Google Scholar 

  3. Qureshi F, Khuhawar MY, Jahangir TM, Channar AH (2016) Synthesis, characterization and biological studies of new linear thermally stable Schiff base polymers with flexible spacers. Acta Chim Slov 63(1):113–120

    Article  CAS  PubMed  Google Scholar 

  4. Kaliyappan T, Rajagopan S, Kannan P (2004) New polymeric Schiff base and its metal complexes. J Appl Polym Sci 91(1):494–500

    Article  CAS  Google Scholar 

  5. Zhou J, Gao F, Jiao T, Xing R, Zhang L, Zhang Q, Peng Q (2018) Selective cu (II) ion removal from wastewater via surface charged self-assembled polystyrene-Schiff base nanocomposites. Colloids Surf A Physicochem Eng Asp 545:60–67

    Article  CAS  Google Scholar 

  6. Kaliyappan T, Kannan P (2000) Co-ordination polymers. Prog Polym Sci 25(3):343–370

    Article  CAS  Google Scholar 

  7. Jiang L, Sun W (2005) A novel bithiazole-containing polymeric complex with soft ferromagnetism. Polym Adv Technol 16(8):646–649

    Article  CAS  Google Scholar 

  8. He B, Sun W, Wang M, Shen Z (2004) Synthesis and magnetic property of a novel SWNT-poly (Schiff base)-Nd3+ complex. Mat Chem Phys 87(1):222–226

    Article  CAS  Google Scholar 

  9. Ogata N (1991) Novel synthetic methods of condensation polymers and their applications as new composite and opto-electronic materials. Pure Appl Chem 63(7):951–960

    Article  CAS  Google Scholar 

  10. Zhang H, Zhang S, Gao K, Liu F, Yao H, Yang B, Hou J (2017) Low band-gap conjugated polymer based on diketopyrrolopyrrole units and its application in organic photovoltaic cells. J Mater Chem A 5(21):10416–10423

    Article  CAS  Google Scholar 

  11. McQuade DT, Pullen AE, Swager TM (2000) Conjugated polymer-based chemical sensors. Chem Rev 100(7):2537–2574

    Article  CAS  PubMed  Google Scholar 

  12. Nikolka M, Nasrallah I, Rose B, Ravva MK, Broch K, Sadhanala A, Illig S (2017) High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives. Nat Mater 16(3):356–362

    Article  CAS  PubMed  Google Scholar 

  13. Moliton A, Hiorns RC (2004) Review of electronic and optical properties of semiconducting π-conjugated polymers: applications in optoelectronics. Polym Int 53(10):1397–1412

    Article  CAS  Google Scholar 

  14. Li G, Chang WH, Yang Y (2017) Low-band gap conjugated polymers enabling solution-processable tandem solar cells. Nat Rev Mater 2(8):1–13

    Article  CAS  Google Scholar 

  15. Kaya E, Gündüz B, Çetin A (2016) Synthesis and characterization of conjugated polymers containing phenyl and bithiophene: controlling of optical properties with molarity. Colloid Polym Sci 294(2):339–345

    Article  CAS  Google Scholar 

  16. Neumann H, Hörig W, Reccius E, Sobotta H, Schumann B, Kühn G (1979) Growth and optical properties of CuGaTe2 thin films. Thin Solid Films 61(1):13–22

    Article  CAS  Google Scholar 

  17. Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC (2001) 2.5% efficient organic plastic solar cells. Appl Phys Lett 78(6):841–843

    Article  CAS  Google Scholar 

  18. Xue J, Uchida S, Rand BP, Forrest SR (2004) Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions. Appl Phys Lett 85(23):5757–5759

    Article  CAS  Google Scholar 

  19. Yang Z, Moffa M, Liu Y, Li H, Persano L, Camposeo A, Nam CY (2018) Electrospun conjugated polymer/fullerene hybrid fibers: photoactive blends, conductivity through tunneling-AFM, light scattering, and perspective for their use in bulk-heterojunction organic solar cells. J Phys Chem C 122(5):3058–3067

    Article  Google Scholar 

  20. Mart H (2006) Oxidative polycondensation reaction. Des Monomers Polym 9(6):551–588

    Article  CAS  Google Scholar 

  21. Deng F, Li X, Ding F, Niu B, Li J (2018) Pseudocapacitive energy storage in Schiff Base polymer with Salphen-type ligands. J Phys Chem C 122(10):5325–5333

    Article  CAS  Google Scholar 

  22. Dineshkumar S, Muthusamy A (2017) Investigation of aggregation induced emission in 4-hydroxy-3-methoxybenzaldehyde azine and polyazine towards application in (opto) electronics: synthesis, characterization, photophysical and electrical properties. Des Monomers Polym 20(1):234–249

    Article  CAS  PubMed  Google Scholar 

  23. Kaya İ, Gökpınar M, Kamacı M (2017) Reaction conditions, photophysical, electrochemical, conductivity, and thermal properties of polyazomethines. Macromol Res 25(7):739–748

    Article  CAS  Google Scholar 

  24. Kiymaz D, Sezgin M, Sefer E, Zafer C, Koyuncu S (2017) Carbazole based DA-π-A chromophores for dye sensitized solar cells: effect of the side alkyl chain length on device performance. Int J Hydrogen Energ 42(12):8569–8575

    Article  CAS  Google Scholar 

  25. Grigoras M, Catanescu O, Colotin G (2001) Poly(Schiff)bases containing 1,10 -bisnaphthyl moieties: synthesis and characterization. Macromol Chem Phys 202(11):2262–2266

    Article  CAS  Google Scholar 

  26. Miyaji T, Azuma T, Asaoka E, Nakamura S (2000) Regeneration of polycondensation of wholly aromatic poly(azomethine)s with 1,5- or 2,6-substituted naphthalene moiety in main chain. J Polym Sci Part A Polym Chem 38:1064–1072

    Article  CAS  Google Scholar 

  27. Wu W, Liu Y, Zhu D (2010) π-Conjugated molecules with fused rings for organic field-effect transistors: design, synthesis and applications. Chem Soc Rev 39(5):1489–1502

    Article  CAS  PubMed  Google Scholar 

  28. Li Y, Zou Y (2008) Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility. Adv Mat 20(15):2952–2958

    Article  CAS  Google Scholar 

  29. Kandulna R, Choudhary RB (2017) Robust electron transport properties of PANI/PPY/ZnO polymeric nanocomposites for OLED applications. Optik 144:40–48

    Article  CAS  Google Scholar 

  30. Kim YA, Kang M, Jeon YJ, Hwang K, Kim YJ, Jang SY, Kim DY (2017) Structure–property relationship of D–A type copolymers based on phenanthrene and naphthalene units for organic electronics. J Mat Chem C 5(39):10332–10342

    Article  CAS  Google Scholar 

  31. Li Z, Wang M, Li H, He J, Li N, Xu Q, Lu J (2017) Rewritable ternary data storage devices based on polymethacrylate containing pendent azobenzene–naphthalene with the combined effects of conformation change and charge traps. J Mat Chem C 5(33):8593–8598

    Article  CAS  Google Scholar 

  32. Hou J, Yang C, He C, Li Y (2006) Poly [3-(5-octyl-thienylene-vinyl)-thiophene]: a side-chain conjugated polymer with very broad absorption band. Chem Comm (8):871–873

  33. Zhou E, Tan ZA, Huo L, He Y, Yang C, Li Y (2006) Effect of branched conjugation structure on the optical, electrochemical, hole mobility, and photovoltaic properties of polythiophenes. J Phys Chem B 110(51):26062–26067

    Article  CAS  PubMed  Google Scholar 

  34. Zhou E, Tan ZA, Yang C, Li Y (2006) Linking polythiophene chains through conjugated bridges: a way to improve charge transport in polymer solar cells. Macromol Rapid Commun 27(10):793–798

    Article  CAS  Google Scholar 

  35. Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv Mat 18(6):789–794

    Article  CAS  Google Scholar 

  36. Tauc J, Menth A (1972) States in the gap. J Non-Cryst Solids 8-10:569–585

    Article  CAS  Google Scholar 

  37. Roncali J (1997) Synthetic principles for bandgap control in linear π-conjugated systems. Chem Rev 97(1):173–206

    Article  CAS  PubMed  Google Scholar 

  38. Demadrille R, Firon M, Leroy J, Rannou P, Pron A (2005) Plastic solar cells based on Fluorenone-containing oligomers and Regioregular alternate copolymers. Adv Funct Mat 15(9):1547–1552

    Article  CAS  Google Scholar 

  39. Wu CG, Hsieh CW, Chen DC, Chang SJ, Chen KY (2005) Low band gap-conjugated polymer derivatives. Synth Met 155(3):618–622

    Article  CAS  Google Scholar 

  40. Kim IT, Elsenbaumer RL (2000) Synthesis, characterization, and electrical properties of poly (1-alkyl-2, 5-pyrrylene vinylenes): new low band gap conducting polymers. Macromol 33(17):6407–6411

    Article  CAS  Google Scholar 

  41. Hou J, Chen HY, Zhang S, Chen RI, Yang Y, Wu Y, Li G (2009) Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells. J Am Chem Soc 131(43):15586–15587

    Article  CAS  PubMed  Google Scholar 

  42. Niu HJ, Huang YD, Bai XD, Li X (2004) Novel poly-Schiff bases containing 4, 4′-diamino-triphenylamine as hole transport material for organic electronic device. Mat Lett 58(24):2979–2983

    Article  CAS  Google Scholar 

  43. Kaya İ, Ayten B, Şenol D (2018) Syntheses of poly (phenoxy-imine) s anchored with carboxyl group: characterization and photovoltaic studies. Opt Mater 78:421–431

    Article  CAS  Google Scholar 

  44. Cetin A, Korkmaz A, Kaya E (2018) Synthesis, characterization and optical studies of conjugated Schiff base polymer containing thieno [3, 2-b] thiophene and 1, 2, 4-triazole groups. Opt Mater 76:75–80

    Article  CAS  Google Scholar 

  45. Gizli N (2011) Morphological characterization of cellulose acetate based reverse osmosis membranesby atomic force microscopy (FM) effect of evaporation time. Chem Chem Technol 5(3):327–331

    Google Scholar 

  46. Yoshida W, Cohen Y (2003) Topological AFM characterization of graft polymerized silica membranes. J Membr Sci 215(1–2):249–264

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esin Kaya.

Electronic Supplementary Material

ESM 1

(DOCX 3.83 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korkmaz, A., Cetin, A., Kaya, E. et al. Novel polySchiff base containing naphthyl: synthesis, characterization, optical properties and surface morphology. J Polym Res 25, 178 (2018). https://doi.org/10.1007/s10965-018-1572-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1572-9

Keywords

Navigation