Skip to main content
Log in

Synthesis, characterization, thermal and electrochemical properties of poly (phenoxy-imine)s containing benzothiazole unit

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, Schiff bases (SCH-1 and SCH-2) were synthesized from the condensation reaction of 2-aminobenzothiazole with 3-hydroxy-4-methoxybenzaldehyde and 3-hydroxy-4-ethoxybenzaldehyde. Poly(phenoxy-imine)s were synthesized from Schiff bases via oxidative polycondensation by NaOCl (6–14% aqueous solution) as oxidant in alkaline medium and H2O2 (35% aqueous solution) as oxidant in THF medium. The structures characterizations of Schiff bases and poly(phenoxy-imine)s were confirmed by FT-IR, 1H and 13C NMR, CV, UV–Vis and TGA analyses. Limit oxygen index (LOI) and the heat resistance index (THRI) temperature were determined from thermogravimetric measurements of compounds. P-SCH-2-A showed the highest LOI as 45.50 with self-extinguishing according to other polymers (18–30). The optical band gap of P-SCH-2-A was determined to be 1.99 eV. Additionally, the optical band gap energy of compounds were calculated by using the Tauc method. According to the Tauc method, the optical band gap (Eg) value of P-SCH-2-A was calculated to be 2.20 eV. The glass transition temperatures (Tg) and surface properties of poly(phenoxy-imine)s were determined from DSC and SEM analyses, respectively. The weight average molecular weight (Mw) values of P-SCH-1-O, P-SCH-2-O, P-SCH-1-A and P-SCH-2-A were calculated to be 7400, 8400, 3100 and 19,100 g mol−1 from gel permeation chromatography (GPC) measurements.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ke H, ZhanFg Q, Zhang X, Cheng G, Sun Y, Li J, Cheng H (2021) Hydroquinone-based conjugated Schiff base polymer as anode material for lithium ion batteries. Mater Lett 286:129235. https://doi.org/10.1016/j.matlet.2020.129235

    Article  CAS  Google Scholar 

  2. Wei Z, Lü X, Wang W, Mele G, Jiang Z (2023) Excellent removal performance of 4,4’-biphenyldicarboxaldehyde m-phenylenediamine Schiff base magnetic polymer towards phenanthrene and 9-phenanthrol: experimental, modeling and DFT calculations studies. J Hazard Mater 441:129920. https://doi.org/10.1016/j.jhazmat.2022.129920

    Article  CAS  PubMed  Google Scholar 

  3. Sek D, Siwy M, Bijak K, Filapek M, Malecki G, Nowak E, Sanetra J et al (2015) Optical and electrochemical properties of novel thermally stable Schiff bases bearing naphthalene unit. J Electroanal Chem 751:128–136. https://doi.org/10.1016/j.jelechem.2015.05.040

    Article  CAS  Google Scholar 

  4. El-Azabawy O, Higazy S, Al-Sabagh A, Abdel-Rahman A et al (2023) Studying the temperature influence on carbon steel in sour petroleum media using facilely-designed Schiff base polymers as corrosion inhibitors. J Mol Struct 1275:134518. https://doi.org/10.1016/j.molstruc.2022.134518

    Article  CAS  Google Scholar 

  5. Fei M, Chang Y, Hao C, Shao L, Liu W et al (2023) Baoming Zhao, Jinwen Zhang, Highly engineerable Schiff base polymer matrix with facile fiber composite manufacturability and hydrothermal recyclability. Compos B 248:110366. https://doi.org/10.1016/j.compositesb.2022.110366

    Article  CAS  Google Scholar 

  6. El-Bindary A, El-Sonbati A, Diab M, Ghoneim M, Serag L (2016) Polymeric complexes: LXII. Coordination chemistry of supramolecular Schiff base polymer complexes-a review. J Mol Liq 216:318–329. https://doi.org/10.1016/j.molliq.2015.12.113

    Article  CAS  Google Scholar 

  7. Yılmaz Baran N, Baran T, Mentes A et al (2018) Highly effective and recoverable Pd(II) catalyst immobilized on thermally stable Schiff base polymer containing phenol group: production, characterization and application in Suzuki coupling reactions. J Organomet Chem 866:87–94. https://doi.org/10.1016/j.jorganchem.2018.04.022

    Article  CAS  Google Scholar 

  8. Arafat M, Abdel-Latif E, El-Taweel F et al (2022) Synthesis and biological assessment of new benzothiazolopyridine and benzothiazolyl-triazole derivatives as antioxidant and antibacterial agents. Bull Chem Soc Ethiop 36:451–463. https://doi.org/10.4314/bcse.v36i2.17

    Article  CAS  Google Scholar 

  9. Sulthana S, Pandian P (2019) A review on indole and benzothiazole derivatives its importance. J Drug Deliv Ther 9:505–509. https://doi.org/10.22270/jddt.v9i1-s.2358

    Article  CAS  Google Scholar 

  10. Hamzah M, Jebur I, Ahmed A (2018) Synthesis, characterization and biological activity evaluation of some new azo derivatives from 2-amino benzothiazole and their derivatives. Kirkuk Univ J Sci Stud (KUJSS) 13:212–227. https://doi.org/10.32894/kujss.2018.143033

    Article  Google Scholar 

  11. Choudhary S, Kalra N, Jeyabalan D (2018) Synthesis, characterization & pharmacological evaluation of some newer benzothiazole derivatives. Indian J Pharm Biol Res (IJPBR) 6:31–36. https://doi.org/10.30750/ijpbr.6.2.6

    Article  CAS  Google Scholar 

  12. Ballari M, Cano N, Lopez A et al (2017) Green synthesis of potential antifungal agents: 2-benzyl substituted thiobenzoazoles. J Agric Food Chem 65:10325–10331. https://doi.org/10.1021/acs.jafc.7b04130

    Article  CAS  PubMed  Google Scholar 

  13. Yu X, Yin Q, Zhang Z et al (2019) Synthesis of 2-substituted benzothiazoles via the Brønsted acid catalyzed cyclization of 2-amino thiophenols with nitriles. Tetrahedron Lett 60:1964–1966. https://doi.org/10.1016/j.tetlet.2019.06.039

    Article  CAS  Google Scholar 

  14. Karaer Yağmur H, Kaya İ, Aydın H (2020) Synthesis, characterization, thermal and electrochemical features of poly (phenoxyimine)s containing pyridine and pyrimidine units. J Polym Res 27:356. https://doi.org/10.1007/s10965-020-02297-w

    Article  CAS  Google Scholar 

  15. Yıldırım M, Kaya İ, Aydın A (2012) Synthesis and characterization of iminothiazole bearing polyphenol with adjustable white-yellow photoluminescence color. Synth Met 162:2443–2450. https://doi.org/10.1016/j.synthmet.2012.11.019

    Article  CAS  Google Scholar 

  16. Kaya İ, Püskül T, Karaer Yağmur H (2022) Synthesis and characterization and some properties of conjugated imine bonding polymers containing pyridine and vinyl units. J Polym Res 29:139. https://doi.org/10.1007/s10965-022-02992-w

    Article  CAS  Google Scholar 

  17. Yılmaz Baran N, Saçak M (2018) Preparation of highly thermally stable and conductive Schiff base polymer: molecular weight monitoring and investigation of antimicrobial properties. J Mol Struct 1163:22–32. https://doi.org/10.1016/j.molstruc.2018.02.088

    Article  CAS  Google Scholar 

  18. Kaya İ, Cihangiroğlu N (2004) Synthesis, characterization and anti-microbial activity of oligo-N-2-aminopyridinylsalicylaldimine and some oligomer-metal complexes. J Polym Res 11:37–42. https://doi.org/10.1023/B:JPOL.0000021746.50347.34

    Article  CAS  Google Scholar 

  19. Özbülbül A, Mart H, Tunçel M, Serin S (2006) A new soluble Schiff base polymer with a double azomethine group synthesized by oxidative polycondensation. Des Monomers Polym 9:169–179. https://doi.org/10.1163/156855506776382655

    Article  Google Scholar 

  20. Kaya İ, Yıldırım M, Avcı A, Kamacı M (2011) Synthesis and thermal characterization of novel poly(azomethine-urethane)s, derived from azomethine containing phenol and polyphenol species. Macromol Res 19:286–293. https://doi.org/10.1007/s13233-011-0306-1

    Article  CAS  Google Scholar 

  21. Kaya İ, Yıldırım M, Aydın A, Şenol D (2010) Synthesis and characterization of fluorescent graft fluorene-co-polyphenol derivatives: the effect of substituent on solubility, thermal stability, conductivity, optical and electrochemical properties. React Funct Polym 70:815–826. https://doi.org/10.1016/j.reactfunctpolym.2010.07.013

    Article  CAS  Google Scholar 

  22. Tezel RN, Kaya İ (2020) Thiophene substituted phenothiazine polymers: design, synthesis and characterization. Arab J Chem 13:3123–3136. https://doi.org/10.1016/j.arabjc.2018.09.004

    Article  CAS  Google Scholar 

  23. Karaer H, Kaya İ, Aydın H (2017) Synthesis, characterization, thermal and electrochemical properties of imine polymers containing pyridine and pyrimidine units. Polimery 62:170–180. https://doi.org/10.14314/polimery.2017.170

    Article  CAS  Google Scholar 

  24. Yıldırım M, Kaya İ (2012) A comparative study of aminothiazole-based polymers synthesized by chemical oxidative polymerization. Synth Met 162:436–443. https://doi.org/10.1016/j.synthmet.2012.01.010

    Article  CAS  Google Scholar 

  25. Nishat N, Khan S, Rasool R, Parveen S (2011) Synthesis, spectral characterization and biocidal activity of thermally stable polymeric Schiff base and its polymer metal complexes. J Inorg Organomet Polym 21:673–681. https://doi.org/10.1007/s10904-011-9457-y

    Article  CAS  Google Scholar 

  26. Maruthapandi M, Kumar V, Gedanken A (2018) Carbon dot initiated synthesis of poly(4,4′- diaminodiphenylmethane) and its methylene blue adsorption. ACS Omega 3:7061–7068. https://doi.org/10.1021/acsomega.8b00304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu Z, Kong L, Wang Y et al (2023) Tuning band gap, color switching, optical contrast, and redox stability in solution-processable BDT-based electrochromic materials. Org Electron 54:94–103. https://doi.org/10.1016/j.orgel.2017.12.014

    Article  CAS  Google Scholar 

  28. Abd-Elnaiem A, Salman O, Hakamy A, Hussein S (2022) Mechanical characteristics and thermal stability of hybrid epoxy and acrylic polymer coating/nanoclay of various thicknesses. J Inorg Organomet Polym Mater 32:2094–2102. https://doi.org/10.1007/s10904-022-02270-8

    Article  CAS  Google Scholar 

  29. Sengottuvelu D, Athianna M, Siddeswaran A (2021) High temperature stable conjugated polyazomethines containing naphthalene moiety: synthesis, characterization, optical, electrical and thermal properties. Spectrochim Acta Part A Mol Biomol Spectrosc 246:118989. https://doi.org/10.1016/j.saa.2020.118989

    Article  CAS  Google Scholar 

  30. Liu S, Zhang X, Bu M, Lei C (2022) Properties tailoring of biobased epoxy resins by regulating the degree of polymerization of oligomers. Eur Polym J 173:111253. https://doi.org/10.1016/j.eurpolymj.2022.111253

    Article  CAS  Google Scholar 

  31. Liu B, Essawy H, Deng S et al (2023) High performance bio-based gelatinized starch-furanic resin derived foam reinforced by microcrystalline cellulose. Ind Crops Prod 194:116282. https://doi.org/10.1016/j.indcrop.2023.116282

    Article  CAS  Google Scholar 

  32. Novozhilov V, Joseph P, Ishiko K et al (2011) Polymer combustion as a basis for hybrid propulsion: a comprehensive review and new numerical approaches. Energies 4:1779–1839. https://doi.org/10.3390/en4101779

    Article  CAS  Google Scholar 

  33. Silva-Santos M, Oliveira M, Giacomin A et al (2017) Flammability on textile of flight crew professional clothing. IOP Conf Ser Mater Sci Eng 254:052006

    Article  Google Scholar 

  34. Satdive A, Mestry S, Borse P et al (2020) Phosphorus and silicon containing amino curing agent for epoxy resin. Iran Polym J 29:433–443. https://doi.org/10.1007/s13726-020-00808-6

    Article  CAS  Google Scholar 

  35. İçduygu M, Asiltürk M, Yalçınkaya M et al (2019) Three-dimensional nano-morphology of carbon nanotube/epoxy filled poly(methylmethacrylate) microcapsules. Materials 12:1–26. https://doi.org/10.3390/ma12091387

    Article  CAS  Google Scholar 

  36. Wang J, Wang F, Gao Z et al (2016) Flame retardant medium-density fiberboard with expanded vermiculite. Bioresources 11:6940–6947. https://doi.org/10.15376/biores.11.3.6940-6947

    Article  CAS  Google Scholar 

  37. Amin P, Ketuly K, Saeed S et al (2021) Synthesis, spectroscopic, electrochemical and photophysical properties of high band gap polymers for potential applications in semi-transparent solar cells. BMC Chem 15:1–15. https://doi.org/10.1186/s13065-021-00751-4

    Article  CAS  Google Scholar 

  38. Colladet K, Nicolas M, Goris L et al (2004) Low-band gap polymers for photovoltaic applications. Thin Solid Films 451–452:7–11. https://doi.org/10.1016/j.tsf.2003.10.085

    Article  CAS  Google Scholar 

  39. Ajayaghosh A (2003) Donor–acceptor type low band gap polymers: polysquaraines and related systems. Chem Soc Rev 32:181–191. https://doi.org/10.1039/b204251g

    Article  CAS  PubMed  Google Scholar 

  40. Koyuncu S, Kaya İ, Baycan Koyuncu F, Ozdemir E (2009) Electrochemical, optical and electrochromic properties of imine polymers containing thiophene and carbazole units. Synth Met 159:1034–1042. https://doi.org/10.1016/j.synthmet.2009.01.024

    Article  CAS  Google Scholar 

  41. Ponnappa S, Arumugam S, Spratt H, Manzhos S et al (2017) A comparative study of electrochemical, optical properties and electropolymerization behavior of thiophene- and furan-substituted diketopyrrolopyrrole. J Mater Res 32:810–821. https://doi.org/10.1557/jmr.2017.26

    Article  CAS  Google Scholar 

  42. Grigoras M, Antonoaia N (2005) Synthesis and characterization of some carbazole-based imine polymers. Eur Polym J 41:1079–1089. https://doi.org/10.1016/j.eurpolymj.2004.11.019

    Article  CAS  Google Scholar 

  43. Mir F (2014) Transparent wide band gap crystals follow indirect allowed transition and bipolaron hopping mechanism. Results Phys 4:103–104. https://doi.org/10.1016/j.rinp.2014.06.001

    Article  Google Scholar 

  44. Jubu P, Obaseki O, Nathan-Abutu A et al (2022) Dispensability of the conventional Tauch’s plot for accurate bandgap determination from UV-Vis optical diffuse reflectance data. Results Opt 9:100273. https://doi.org/10.1016/j.rio.2022.100273

    Article  Google Scholar 

  45. Cimrov V, Ulbricht C, Dzhabarov V et al (2014) New electroluminescent carbazole-containing conjugated polymer: synthesis, photophysics, and electroluminescence. Polymer 55:6220–6226. https://doi.org/10.1016/j.polymer.2014.10.015

    Article  CAS  Google Scholar 

  46. Misra A, Kumar P, Srivastava R et al (2005) Electrochemical and optical studies of conjugated polymers for three primary colours. Indian J Pure Appl Phys 43:921–925

    CAS  Google Scholar 

  47. Boborodea A, O’Donohue S, Brookes A (2021) A new GPC/TREF/Lin ELSD instrument to determine the molecular weight distribution and chemical composition: application to recycled polymers. Int J Polym Anal Charact 26:721–734. https://doi.org/10.1080/1023666X.2021.1971836

    Article  CAS  Google Scholar 

  48. Viéville J, Tanty M, Delsuc M (2011) Polydispersity index of polymers revealed by DOSY NMR. J Magn Reson 212:169–173. https://doi.org/10.1016/j.jmr.2011.06.020

    Article  CAS  PubMed  Google Scholar 

  49. Shrivastava A (2018) Polymerization. Introduction to plastics engineering plastics design library, pp 17–48. ISBN: 9780323396196

Download references

Acknowledgements

The authors thank Canakkale Onsekiz Mart University scientific research project commission for support with the project number (Project Nu.: FYL-2021-3574).

Author information

Authors and Affiliations

Authors

Contributions

İK: Supervision, methodology, conceptualization, data curation, writing-review & editing, funding acquisition, resources, project administration. ED: Data curation, methodology, writing-review & editing, original draft, validation, conceptualization. HKY: Writing-review & editing, original draft, conceptualization, data curation.

Corresponding author

Correspondence to İsmet Kaya.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, İ., Dinçer, E. & Yağmur, H.K. Synthesis, characterization, thermal and electrochemical properties of poly (phenoxy-imine)s containing benzothiazole unit. Polym. Bull. (2023). https://doi.org/10.1007/s00289-023-05062-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-023-05062-3

Keywords

Navigation