Skip to main content
Log in

Enhanced electroactive phase, toughness and dielectric properties of poly(vinylidene fluoride) with addition of MMA-BA-IL copolymer

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Methyl methacrylate (MMA), butyl acrylate (BA) and 1-butyl-3-vinylimdazolium tetrafluoroborate ([BVIM][BF4]) copolymer (MMA-BA-IL) was prepared and used to enhance the electroactive phase content, toughness and dielectric properties of poly(vinylidene fluoride) (PVDF). Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) tests indicated that crystal transformation of PVDF from α-phase to β/γ-phase occurred due to ion-dipole interaction between PVDF and [BVIM][BF4]. Scanning electron microscope (SEM) results showed MMA-BA-IL copolymer dispersed in the PVDF uniformly and the partial replacement of MMA components by [BVIM][BF4] decreased the miscibility between PVDF and MMA-BA copolymer. MMA-BA-IL copolymer improved the tensile ductility and impact toughness of PVDF. When the content of MMA-BA-IL was beyond 10 wt%, the elongation at break was higher than 400% and the impact strength was higher than 600 J/m. Deformation mechanism researches proved that shear yielding of the PVDF matrix and debonding/cavitation of the MMA-BA-IL copolymer particles were the major toughening mechanisms. The addition of MMA-BA-IL copolymer enhanced the dielectric properties of PVDF significantly. When the MMA-BA-IL content was 15 wt%, the dielectric constant of the PVDF/MMA-BA-IL blend increased to 54.3 at the 100 Hz frequency, which improved by 246% relative to that of the pure PVDF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang X, Shen Y, Xu B, Zhang Q, Gu L, Jiang J, Ma J, Lin Y, Nan CW (2016) Giant energy density and improved discharge efficiency of solution-processed polymer nanocomposites for dielectric energy storage. Adv Mater 28:2055–2061

    Article  CAS  PubMed  Google Scholar 

  2. Huang XY, Jiang PK (2015) Core-Shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv Mater 27:546–554

    Article  CAS  PubMed  Google Scholar 

  3. Lin HJ, Li L, Ren J, Cai ZB, Qiu L, Yang Z, Peng HS (2013) Conducting polymer composite film incorporated with aligned carbon nanotubes for transparent, flexible and efficient supercapacitor. Sci Rep 3:1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Roy S, Thakur P, Hoque NA, Bagchi B, Sepay N, Khatun F, Kool A, Das S (2017) Electroactive and high dielectric folic acid/PVDF composite film rooted simplistic organic photovoltaic self-charging energy storage cell with superior energy density and storage capability. ACS Appl Mater Interfaces 19:24198–24209

    Article  CAS  Google Scholar 

  5. Xia XD, Wang Y, Zhong Z, Weng GJ (2017) A frequency-dependent theory of electrical conductivity and dielectric permittivity for graphene-polymer nanocomposites. Carbon 111:221–230

    Article  CAS  Google Scholar 

  6. Yang MH, Zhao H, He DL, Hu CH, Chen HW, Bai JB (2017) Carbon coated boron nitride Nanosheets for polymer nanocomposites with enhanced dielectric performance. Materials 10:741

    Article  PubMed Central  Google Scholar 

  7. Li R, Zhou J, Liu HJ, Pei JZ (2017) Effect of polymer matrix on the structure and electric properties of piezoelectric lead Zirconatetitanate/polymer composites. Materials 10:945

    Article  PubMed Central  Google Scholar 

  8. Su R, Lu ZD, Zhang DW, Liu Y, Wang ZP, Li JN, Bian JH, Li YX, Hu XH, Gao JH, Yang YD (2016) High energy density performance of polymer nanocomposites induced by designed formation of BaTiO3@sheet-likeTiO2 hybrid Nanofillers. J Phys Chem C 120:11769

    Article  CAS  Google Scholar 

  9. Karan SK, Das AK, Bera R, Paria SA, Maitra N, Shrivastava K, Khatua BB (2016) Effect of γ-PVDF on enhanced thermal conductivity and dielectric property of Fe-rGO incorporated PVDF based flexible nanocomposite film for efficient thermal management and energy storage applications. RSC Adv 6:37773–37783

    Article  CAS  Google Scholar 

  10. Thaku VK, Tan EJ, Lin MF, Lee PS (2011) Poly(vinylidene fluoride)-graft-poly(2-hydroxyethyl methacrylate): a novel material for high energy density capacitors. J Mater Chem 21:3751–3759

    Article  CAS  Google Scholar 

  11. Xie LY, Huang X, Yang K, Li ST, Jiang PK (2014) "grafting to" route to PVDF-HFP-GMA/BaTiO3 nanocomposites with high dielectric constant and high thermal conductivity for energy storage and thermal management applications. J Mater Chem A 2:5244–5251

    Article  CAS  Google Scholar 

  12. Kim P, Jones SC, Hotchkiss PJ, Haddock JN, Kippelen B, Marder S, Perry JW (2007) Phosphonic acid-modified barium Titanate polymer nanocomposites with high permittivity and dielectric strength. Adv Mater 19:1001–1005

    Article  CAS  Google Scholar 

  13. Kim P, Doss NM, Tillotson JP, Hotchkiss PJ, Pan MJ, Marder SR, Li JY, Calame JP, Perry JW (2009) High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer. ACS Nano 3:2581–2592

    Article  CAS  PubMed  Google Scholar 

  14. Wang GS, Wu YY, Zhang XJ, Li Y, Guo L, Cao MS (2014) Controllable synthesis of uniform ZnO nanorods and their enhanced dielectric and absorption properties. J Mater Chem A 2:8644–8651

    Article  CAS  Google Scholar 

  15. Li ZT, Zhang X, Li GH (2014) In situ ZnO nanowire growth to promote the PVDF piezo phase and the ZnO-PVDF hybrid self-rectified nanogenerator as a touch sensor. Phys Chem Chem Phys 16:5475–5479

    Article  CAS  PubMed  Google Scholar 

  16. Mohamadi S, Sharifi-Sanjani N, Foyouhi A (2013) Evaluation of graphene nanosheets influence on the physical properties of PVDF/PMMA blend. J Polym Res 20:1

    Article  CAS  Google Scholar 

  17. Wang L, Dang ZM (2005) Arbon nanotube composites with high dielectric constant at low percolation threshold. Appl Phys Lett 87:284–291

    Google Scholar 

  18. Dang ZM, Wang L, Yin Y, Zhang Q, Lei QQ (2007) Giant dielectric Permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv Mater 19:852–857

    Article  CAS  Google Scholar 

  19. He F, Lau S, Chan HL, Fan JT (2010) High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite Nanoplates. Adv Mater 21:710–715

    Article  CAS  Google Scholar 

  20. Dang ZM, Lin YH, Nan CW (2003) Novel ferroelectric polymer composites with high dielectric constants. Adv Mater 15:1625–1629

    Article  CAS  Google Scholar 

  21. Dias JC, Lopes AC, Magalhaes B, Botelho G, Silva MM, Esperanca JMSS, Lanceros-Mendez S (2015) High performance electromechanical actuators based on ionic liquid/poly(vinylidene fluoride). Polym Test 48:199–205

    Article  CAS  Google Scholar 

  22. Mejri R, Dias JC, Lopes AC, Hentat SB, Silva MM, Botelho G, Ferro M, Esperanca JMSS, Maceiras A, Laza JM, Vilas JL, Leon LM, Lanceros-Mendez S (2015) Effect of ionic liquid anion and cation on the physico-chemical properties of poly(vinylidene fluoride)/ionic liquid blends. Eur Polym J 71:304–313

    Article  CAS  Google Scholar 

  23. Mejri R, Dias JC, Lopes AC, Hentati SB, Marins MS, Costa CM, Lanceros-Mendez S (2016) Effect of anion type in the performance of ionic liquid/poly(vinylidene fluoride) electromechanical actuators. J Non-Cryst Solids 453:8–15

    Article  CAS  Google Scholar 

  24. Xing CY, Zhao MM, Zhao LP, You JC, Cao XJ, Li YJ (2013) Ionic liquid modified poly(vinylidene fluoride): crystalline structures, miscibility, and physical properties. Polym Chem 24:5726–5734

    Article  CAS  Google Scholar 

  25. Xing CY, Wang YY, Zhang C, Li LF, Li YJ, Li JY (2015) Immobilization of ionic liquids onto the poly(vinylidene fluoride) by Electron beam irradiation. Ind Eng Chem Res 38:9351–9359

    Article  CAS  Google Scholar 

  26. Xing CY, You JC, Li YJ, Li JY (2015) Nanostructured poly(vinylidene fluoride)/ionic liquid composites: formation of organic conductive Nanodomains in polymer matrix. J Phys Chem C 36:21155–21164

    Article  CAS  Google Scholar 

  27. Xing CY, Wang YY, Huang XY, Li YJ, Li JY (2016) Poly(vinylidene fluoride) nanocomposites with simultaneous organic Nanodomains and inorganic nanoparticles. Macromolecules 3:1026–1035

    Article  CAS  Google Scholar 

  28. Xing CY, Zhao LP, You JC, Dong WY, Cao XJ, Li JY (2012) Impact of ionic liquid-modified multiwalled carbon nanotubes on the crystallization behavior of poly(vinylidene fluoride). J Phys Chem B 116:8312–8320

    Article  CAS  PubMed  Google Scholar 

  29. Bi XJ, Song SX, Sun SL (2017) Performance improvement of poly(vinylidene fluoride) by in situ copolymerization of methyl methacrylate and ionic liquid. Macromol Res 12:1–9

    Google Scholar 

  30. Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci 4:683–706

    Article  CAS  Google Scholar 

  31. Bahader A, Gui HG, Fang HG, Wang P, Wu SJ, Ding YS (2016) Preparation and characterization of poly(vinylidene fluoride) nanocomposites containing amphiphilic ionic liquid modified multiwalled carbon nanotubes. J Polym Res 6:184

    Article  CAS  Google Scholar 

  32. Martins P, Costa CM, Lanceros-Mendez S (2011) Nucleation of electroactive β-phase poly(vinilidene fluoride) with CoFe2O4 and NiFe2O4 nanofillers: a new method for the preparation of multiferroic nanocomposites. Appl Phys A Mater Sci Process 1:233–237

    Article  CAS  Google Scholar 

  33. Martin P, Costa CM, Benelmekki M, Botello G, Lanceros-Mendes S (2012) On the origin of the electroactive poly(vinylidene fluoride) β-phase nucleation by ferrite nanoparticles via surface electrostatic interactions. CrystEngComm 14: 2807–2811

  34. Martins P, Caparros C, Gonçalves R, Martins PM, Benelmekki M, Botelho G, Lanceros-Mendes S (2012) Role of nanoparticle surface charge on the nucleation of the electroactive β-poly(vinylidene fluoride) nanocomposites for sensor and actuator applications. J Phys Chem C 116:15790–15794

    Article  CAS  Google Scholar 

  35. Andrew JS, Clarke DR (2008) Enhanced ferroelectric phase content of polyvinylidene difluoride fibers with the addition of magnetic nanoparticles. Langmuir 16:8435–8438

    Article  CAS  Google Scholar 

  36. Song HH, Yang SJ, Sun SL, Zhang HX (2013) Effect of miscibility and crystallization on the mechanical properties and transparency of PVDF/PMMA blends. Polym -Plast Technol Eng 52:221–227

    Article  CAS  Google Scholar 

  37. Sencadas V, Lanceros-méndez S, Sabater iSR, Andrio BA, Gómez RJL (2012) Relaxation dynamics of poly(vinylidene fluoride) studied by dynamical mechanical measurements and dielectric spectroscopy. Eur Phys J E 35:41–52

    Article  CAS  PubMed  Google Scholar 

  38. Leones R, Costa CM, Machado AV, Esperança JMSS, Silva MM, Lanceros-Méndez S (2013) Development of solid polymer electrolytes based on poly(vinylidene fluoride-trifluoroethylene) and the [N 1 1 1 2(OH) ][NTf2 ] ionic liquid for energy storage applications. Solid State Ionics 253:143–150

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No.51273025), Jilin Provincial Science & Technology Department (20170203010GX) and The Education Department of Jilin Province (JJKH20170551KJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shulin Sun or Quanming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, S., Bi, X., Jiang, S. et al. Enhanced electroactive phase, toughness and dielectric properties of poly(vinylidene fluoride) with addition of MMA-BA-IL copolymer. J Polym Res 25, 157 (2018). https://doi.org/10.1007/s10965-018-1561-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1561-z

Keywords

Navigation