Skip to main content
Log in

An antibacterial composite system based on multi-responsive microgels hosting monodisperse gold nanoparticles

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A multi-responsive microgel having response to pH, temperature, and salt concentration was successfully prepared using a water-soluble monomer. Microgels were readily prepared from 2-(N-morpholino)ethyl methacrylate (MEMA) via emulsion polymerization using glycidyl methacrylate as a comonomer cross-linker. The morpholino groups of MEMA residues of microgels were able to give complexation with metal containing anions such as AuCl4 in acidic conditions. The reduction of aurate ions with sodium borohydride led to immobilized-gold nanoparticles (AuNP) in the microgel system. Average particle diameters of AuNPs were determined to be 10 ± 2 nm. The resulting AuNP-microgel system was examined as a nanoreactor for catalyst system and determined to be very effective in the reduction of 4-nitrophenol model reaction in aqueous media. AuNPs-microgel composite system had antibacterial properties against several Gram-positive and Gram-negative bacteria similar to amoxicillin. This P(MEMA-co-GMA) microgel is also very useful for different applications such as a host for metal nanoparticle production, a drug carrier or drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cao R, Gu ZY, Patterson GD, Armitage BA (2004) A recoverable enzymatic microgel based on biomolecular recognition. J Am Chem Soc 126(3):726–727. https://doi.org/10.1021/Ja039502d

    Article  CAS  Google Scholar 

  2. Panayitou M, Pohner C, Vandevyver C, Wandrey C, Hilbrig F, Freitag R (2007) Synthesis and characterisation of thermo-responsive poly(N,N '-diethylacrylamide) microgels. React Funct Polym 67(9):807–819. https://doi.org/10.1016/j.reactfunctpolym.2006.12.008

    Article  Google Scholar 

  3. Thorne JB, Vine GJ, Snowden MJ (2011) Microgel applications and commercial considerations. Colloid Polym Sci 289(5–6):625–646. https://doi.org/10.1007/s00396-010-2369-5

    Article  CAS  Google Scholar 

  4. Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interfac 85(1):1–33. https://doi.org/10.1016/S0001-8686(99)00023-8

    Article  CAS  Google Scholar 

  5. Bucatariu S, Fundueanu G, Prisacaru I, Balan M, Stoica I, Harabagiu V, Constantin M (2014) Synthesis and characterization of thermosensitive poly(N-isopropylacrylamide-co-hydroxyethylacrylamide) microgels as potential carriers for drug delivery. J Polym Res 21(11):580. https://doi.org/10.1007/s10965-014-0580-7

    Article  Google Scholar 

  6. Hoare T, Pelton R (2004) Highly pH and temperature responsive microgels functionalized with vinylacetic acid. Macromolecules 37(7):2544–2550. https://doi.org/10.1021/ma035658m

    Article  CAS  Google Scholar 

  7. Nart Z, Kayaman-Apohan N (2011) Preparation, characterization and drug release behavior of poly(acrylic acid–co-2-hydroxyethyl methacrylate-co-2-acrylamido-2-methyl-1-propanesulfonic acid) microgels. J Polym Res 18(5):869–874. https://doi.org/10.1007/s10965-010-9483-4

    Article  CAS  Google Scholar 

  8. Park TG, Hoffman AS (1993) Sodium chloride-induced phase-transition in nonionic poly(N-isopropylacrylamide) gel. Macromolecules 26(19):5045–5048. https://doi.org/10.1021/ma00071a010

    Article  CAS  Google Scholar 

  9. Liu XY, Guo H, Zha LS (2012) Study of pH/temperature dual stimuli-responsive nanogels with interpenetrating polymer network structure. Polym Int 61(7):1144–1150. https://doi.org/10.1002/pi.4192

    Article  CAS  Google Scholar 

  10. Ma LW, Liu MZ, Liu HL, Chen J, Cui DP (2010) In vitro cytotoxicity and drug release properties of pH- and temperature-sensitive core-shell hydrogel microspheres. Int J Pharm 385(1–2):86–91. https://doi.org/10.1016/j.ijpharm.2009.10.037

    Article  CAS  Google Scholar 

  11. Butun V, Atay A, Tuncer C, Bas Y (2011) Novel multiresponsive microgels: synthesis and characterization studies. Langmuir 27(20):12657–12665. https://doi.org/10.1021/La2026544

    Article  CAS  Google Scholar 

  12. Tuncer C, Samav Y, Ulker D, Baker SB, Butun V (2015) Multi-responsive microgel of a water-soluble monomer via emulsion polymerization. J Appl Polym Sci 132(24):1–7. https://doi.org/10.1002/App.42072

    Article  Google Scholar 

  13. Muratalin M, Luckham PF (2013) Preparation and characterization of microgels sensitive toward copper II ions. J Colloid Interf Sci 396:1–8. https://doi.org/10.1016/j.jcis.2012.12.069

    Article  CAS  Google Scholar 

  14. Wang ZX, Tan BE, Hussain I, Schaeffer N, Wyatt MF, Brust M, Cooper AI (2007) Design of polymeric stabilizers for size-controlled synthesis of monodisperse gold nanoparticles in water. Langmuir 23(2):885–895. https://doi.org/10.1021/La062623h

    Article  CAS  Google Scholar 

  15. Palioura D, Armes SP, Anastasiadis SH, Vamvakaki M (2007) Metal nanocrystals incorporated within pH-responsive microgel particles. Langmuir 23(10):5761–5768. https://doi.org/10.1021/la063359v

    Article  CAS  Google Scholar 

  16. Zhang JG, Xu SQ, Kumacheva E (2004) Polymer microgels: reactors for semiconductor, metal, and magnetic nanoparticles. J Am Chem Soc 126(25):7908–7914. https://doi.org/10.1021/Ja031523k

    Article  CAS  Google Scholar 

  17. Zhang JG, Xu SQ, Kumacheva E (2005) Photogeneration of fluorescent silver nanoclusters in polymer microgels. Adv Mater 17(19):2336–2240. https://doi.org/10.1002/adma.200501062

    Article  CAS  Google Scholar 

  18. Ballauff M, Lu Y (2007) "Smart" nanoparticles: preparation, characterization and applications. Polymer 48(7):1815–1823. https://doi.org/10.1016/j.polymer.2007.02.004

    Article  CAS  Google Scholar 

  19. Chen TY, Cao Z, Guo XL, Nie JJ, Xu JT, Fan ZQ, Du BY (2011) Preparation and characterization of thermosensitive organic-inorganic hybrid microgels with functional Fe3O4 nanoparticles as crosslinker. Polymer 52(1):172–179. https://doi.org/10.1016/j.polymer.2010.11.014

    Article  CAS  Google Scholar 

  20. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346. https://doi.org/10.1021/Cr030698+

    Article  CAS  Google Scholar 

  21. Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Edit 46(8):1222–1244. https://doi.org/10.1002/anie.200602866

    Article  CAS  Google Scholar 

  22. Schmid G (1992) Large clusters and colloids - metals in the embryonic state. Chem Rev 92(8):1709–1727

    Article  CAS  Google Scholar 

  23. Thomas V, Namdeo M, Mohan YM, Bajpai SK, Bajpai M (2008) Review on polymer, hydrogel and microgel metal nanocomposites: a facile nanotechnological approach. J Macromol Sci A 45(1):107–119. https://doi.org/10.1080/10601320701683470

    Article  Google Scholar 

  24. Thompson DT (2007) Using gold nanoparticles for catalysis. Nano Today 2(4):40–43. https://doi.org/10.1016/S1748-0132(07)70116-0

    Article  Google Scholar 

  25. Deng YH, Cai Y, Sun ZK, Liu J, Liu C, Wei J, Li W, Liu C, Wang Y, Zhao DY (2010) Multifunctional mesoporous composite microspheres with well-designed nanostructure: a highly integrated catalyst system. J Am Chem Soc 132(24):8466–8473. https://doi.org/10.1021/Ja1025744

    Article  CAS  Google Scholar 

  26. Pradhan N, Pal A, Pal T (2001) Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles. Langmuir 17(5):1800–1802. https://doi.org/10.1021/La000862d

    Article  CAS  Google Scholar 

  27. Saha S, Pal A, Kundu S, Basu S, Pal T (2010) Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 26(4):2885–2893. https://doi.org/10.1021/La902950x

    Article  CAS  Google Scholar 

  28. Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M (2010) Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J Phys Chem C 114(19):8814–8820. https://doi.org/10.1021/Jp101125j

    Article  CAS  Google Scholar 

  29. Herves P, Perez-Lorenzo M, Liz-Marzan LM, Dzubiella J, Lu Y, Ballauff M (2012) Catalysis by metallic nanoparticles in aqueous solution: model reactions. Chem Soc Rev 41(17):5577–5587. https://doi.org/10.1039/C2CS35029G

    Article  CAS  Google Scholar 

  30. Lima E, Guerra R, Lara V, Guzman A (2013) Gold nanoparticles as efficient antimicrobial agents for escherichia coli and salmonella typhi. Chem Cent J 7. https://doi.org/10.1186/1752-153x-7-11

  31. Armelao L, Barreca D, Bottaro G, Gasparotto A, Maccato C, Maragno C, Tondello E, Stangar UL, Bergant M, Mahne D (2007) Photocatalytic and antibacterial activity of TiO2 and Au/TiO2 nanosystems. Nanotechnology 18(37). https://doi.org/10.1088/0957-4484/18/37/375709

  32. Pissuwan D, Cortie CH, Valenzuela SM, Cortie MB (2010) Functionalised gold nanoparticles for controlling pathogenic bacteria. Trends Biotechnol 28(4):207–213

    Article  CAS  Google Scholar 

  33. Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511

    Article  CAS  Google Scholar 

  34. Rai A, Prabhune A, Perry CC (2010) Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem 20(32):6789–6798

    Article  CAS  Google Scholar 

  35. Zhou Y, Kong Y, Kundu S, Cirillo JD, Liang H (2012) Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. J Nanobiotechnol 10(1):19. https://doi.org/10.1186/1477-3155-10-19

    Article  CAS  Google Scholar 

  36. Zhao YY, Tian Y, Cui Y, Liu WW, Ma WS, Jiang XY (2010) Small molecule-capped gold nanoparticles as potent antibacterial agents that target gram-negative bacteria. J Am Chem Soc 132(35):12349–12356

    Article  CAS  Google Scholar 

  37. Matyjaszewski K, Wang JL, Grimaud T, Shipp DA (1998) Controlled/"living" atom transfer radical polymerization of methyl methacrylate using various initiation systems. Macromolecules 31(5):1527–1534. https://doi.org/10.1021/Ma971298p

    Article  Google Scholar 

  38. Lin C, Tao K, Hua DY, Ma Z, Zhou SH (2013) Size effect of gold nanoparticles in catalytic reduction of p-Nitrophenol with NaBH4. Molecules 18(10):12609–12620. https://doi.org/10.3390/molecules181012609

    Article  CAS  Google Scholar 

  39. Solomons G, Fryhle C (2000) Organic chemistry, 7th edn. John Wiley & Sons, Inc., New York,

    Google Scholar 

  40. Butun V, Armes SP, Billingham NC (2001) Synthesis and aqueous solution properties of near-monodisperse tertiary amine methacrylate homopolymers and diblock copolymers. Polymer 42(14):5993–6008. https://doi.org/10.1016/S0032-3861(01)00066-0

    Article  CAS  Google Scholar 

  41. Hazot P, Chapel JP, Pichot C, Elaissari A, Delair T (2002) Preparation of poly(N-ethyl methacrylamide) particles via an emulsion/precipitation process: The role of the crosslinker. J Polym Sci Pol Chem 40(11):1808–1817. https://doi.org/10.1002/Pola.10259

    Article  CAS  Google Scholar 

  42. Praharaj S, Nath S, Ghosh SK, Kundu S, Pal T (2004) Immobilization and recovery of Au nanoparticles from anion exchange resin: resin-bound nanoparticle matrix as a catalyst for the reduction of 4-nitrophenol. Langmuir 20(23):9889–9892. https://doi.org/10.1021/La0486281

    Article  CAS  Google Scholar 

  43. Elias WC, Eising R, Silva TR, Albuquerque BL, Martendal E, Meier L, Domingos JB (2014) Screening the formation of silver nanoparticles using a new reaction kinetics multivariate analysis and assessing their catalytic activity in the reduction of nitroaromatic compounds. J Phys Chem C 118(24):12962–12971. https://doi.org/10.1021/jp503280y

    Article  CAS  Google Scholar 

  44. Zhou XC, Xu WL, Liu GK, Panda D, Chen P (2010) Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level. J Am Chem Soc 132(1):138–146. https://doi.org/10.1021/ja904307n

    Article  CAS  Google Scholar 

  45. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E-coli as a model for Gram-negative bacteria. J Colloid Interf Sci 275(1):177–182

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Scientific and Technological Research Council of Turkey is thanked for financial support (GR/111 T972). This work was also financially supported by the Scientific Research Project Supporting Commission of Eskisehir Osmangazi University (GR/201319C103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vural Bütün.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

Electronic supplementary material

ESM 1

(DOCX 2198 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulker, D., Tuncer, C., Sezgin, S.B. et al. An antibacterial composite system based on multi-responsive microgels hosting monodisperse gold nanoparticles. J Polym Res 24, 169 (2017). https://doi.org/10.1007/s10965-017-1336-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1336-y

Keywords

Navigation