Skip to main content
Log in

Synthesis, characterization and application of a novel nanometer-sized chelating resin for removal of Cu(II), Co(II) and Ni(II) ions from aqueous solutions

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A novel nanometer-sized chelating resin (NSCR) was prepared via two steps, First step: copolymerization reaction of N-methacryloxyphtalimide (NMP) with methylenebisacrylamide (MBA) by suspension polymerization method to give ultrafine poly (NMP-co-MBA). Second step: reaction of triethylenetetramine (TETA) with poly (NMP-co-MBA) to give NSCR. The prepared NSCR was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Brunauer-Emmett-Taller (BET) and thermogravimetric analysis (TGA). This study illustrated the capability of NSCR for extraction of Cu(II), Co(II) and Ni(II) from aquatic solutions. The pH effect, metal ions concentration, temperature and contact time were elaborated in batch experiments. The results showed that high capacities were 1.3, 1.0 and 0.95 mmol/g resin for Cu(II), Ni(II) and Co(II) ions, respectively. The experimental data of adsorption isotherms were convenient for Langmuir isotherm, and the kinetic data illustrated that the removal process was described by pseudo-second order kinetic model. The parameters of Thermo dynamic illustrated that the process of adsorption was endothermic and spontaneous reaction. The prepared NSCR was regenerated and used repetitively for five times with small decrease in adsorption capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Scheme 3
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Van Genderen EJ, Ryan AC, Tomasso JR, Klaine SJ (2005) Evaluation of acute copper toxicity to larval fathead minnows (Pimephales Promelas) in soft surface waters. Environ Toxicol Chem 24:408–414

    Article  Google Scholar 

  2. Apostoli P, Catalani S, Zaghini A, Mariotti A, Poliani PL, Vielmi V, Semeraro F, Duse S, Porzionato A, Macchi V, Padovani A, Rizzetti MC, De Caro R (2012) High doses of cobalt induce optic and auditory neuropathy. Exp Toxicol Pathol 65:719–727

    Article  Google Scholar 

  3. Das KK, Das SN, Dhundasi SA (2008) Nickel, its adverse health effects & oxidative stress. Indian J Med Res 128:412–425

    CAS  Google Scholar 

  4. Nebel BJ, Wright RT (1966) Environmental science 5th edn. Prenticehall, London,

    Google Scholar 

  5. Nagh WSW, Endud CS, Mayanar R (2002) Removal of Cu(II) ions from aqueous solution onto chitosan and crosslinked chitosan beads. React Funct Polym 50:181–190

    Article  Google Scholar 

  6. Tofighy MA, Mohammadi T (2011) Adsorption of divalent heavy metal ions from water using carbon nano tube sheet. J Hazard Mater 185:140–147

    Article  CAS  Google Scholar 

  7. Deligz H, Erdem E (2008) Comparative studies on the solvent extraction of transition metal cations by calixarene, phenol and ester derivatives. J Hazard Mater 154:29–32

    Article  Google Scholar 

  8. Bessbousse H, Rhlalou T, Verchere JF, Lebrun L (2008) Removal of heavy metal ions from aqueous solutions by filteration with a novel complexing membrane containing poly(ethyleneimine) inapoly (vinylalcohol) matrix. J Membr Sci 307:249–259

    Article  CAS  Google Scholar 

  9. Rivas BL, Quilodran B, Quiroz E (2004) Trace metal ion retention properties of crosslinked poly(4-Vinylpyridine) and poly(acrylic acid). J Appl Polym Sci 92:2908–2916

    Article  CAS  Google Scholar 

  10. Henry WD, Zhao D, Sengupta AK, Lang C (2004) Preparation and characterization of a new class of polymeric ligand exchangers for selective removal of trace contaminants from water. React Funct Polym 60:109–120

    Article  CAS  Google Scholar 

  11. Nastasovic A, Jovanovic S, Dordevic D, Onjia A, Jakovljevic D, Novakovic T (2004) Metal sorption on macroporous poly (GMA-co-EGDMA) modified with ethylene di amine. React Funct Polym 58:139–147

    Article  CAS  Google Scholar 

  12. Baraka A, Hall PJ, Heslop MJ (2007) Preparation and characterization of melamine-formaldehyde-dtpa chelating resin and its use as an adsorbent for heavy metals removal from wastewater. React Funct Polym 67:585–600

    Article  CAS  Google Scholar 

  13. Leinonen H, Lehto J (2000) Ion-exchange of nickel by iminodiacetic acid chelating resin Chelex 100. React Funct Polym 43:1–6

    Article  CAS  Google Scholar 

  14. Neagu V, Bunia I, Luca C (2006) Organic ion exchangers synthesis and their behaviour in the retention of some metal ions. Macromol Symp 235:136–142

    Article  CAS  Google Scholar 

  15. Denizli A, Sanli N, Garipcan B, Patir S, Alsancak G (2004) Methacryloylamidoglutamic acid incorporated porous poly(methyl methacrylate) beads for heavy-metal removal. Ind Eng Chem Res 43:6095–6101

    Article  CAS  Google Scholar 

  16. Zohuriaan Mehr MJ, Pourjavadi A, Salehi Rad M (2004) Modified CMC. 2. Novel carboxymethylcellulose-based poly(amidoxime) chelating resin with high metal sorption capacity. React Funct Polym 61:23–31

    Article  CAS  Google Scholar 

  17. Shaaban AF, Fadel DA, Mahmoud AA, Elkomy MA, Elbahy SM (2014) Synthesis of a new chelating resin bearing amidoxime group for adsorption of cu(II), Ni(II) and Pb(II) by batch and fixed-bed column methods. J Environ Chem Eng 2:632–641

    Article  CAS  Google Scholar 

  18. Shaaban AF, Fadel DA, Mahmoud AA, Elkomy MA, Elbahy SM (2013) Removal of Pb(II), cd(II), Mn(II) and Zn(II) using iminodiacetate chelating resin by batch and fixed bed column methods. Desalin Water Treat 51:5526–5536

    Article  CAS  Google Scholar 

  19. Shaaban AF, Fadel DA, Mahmoud AA, Elkomy MA, Elbahy SM (2013) Synthesis and characterization of dithiocarbamate chelating resin and its adsorption performance towards Hg(II), Cd(II) and Pb(II) by batch and fixed-bed column methods. J Environ Chem Eng 1:208–217

    Article  CAS  Google Scholar 

  20. Shaaban AF, Mohamed TY, Fadel DA, Bayomi NM (2017) Removal of Ba(II) and Sr(II) ions using modified chitosan beads with bendent amidoxime moieties by batch and fixed column methods. J Desalin Water Treat in press

  21. Ge F, Li M, Ye H, Zhao B (2012) Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J Hazard Mater 211–212:366–372

    Article  Google Scholar 

  22. Cumbal L, Sengupta AK (2005) Removal using polymer-supported hydrated iron(III) oxide nanoparticles: role of donnan membrane effect. Environ Sci Technol 39:6508–6515

  23. Zargoosh K, Abedini H, Abdolmaleki A, Molavian MR (2013) Effective removal of heavy metal ions from industrial wastes using thiosalicylhydrazide-modified magnetic nanoparticles. Ind Eng Chem Res 52:14944–14954

    Article  CAS  Google Scholar 

  24. Wang X, Guo Y, Yang L, Han M, Zhao J, Cheng X (2012) Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment. J Environ Anal Toxicol 2:154

    Article  Google Scholar 

  25. Shaaban AF, Arief MMH, Khalil AA, Messina NN (1988) 2-Poly-N-acyloyloxy- and -N- methacryloyloxyphthalimi- de as activated drug-binding matrices. Acta Polym 39:145–148

    Article  CAS  Google Scholar 

  26. Khalil AA (2006) Exchange reactions of poly-2-(N-phthalimido) ethyl acrylate with hydroxyl and amino compounds. J Appl Polym Sci 99:2258–2262

    Article  CAS  Google Scholar 

  27. Long C, Li Y, Yu W, Li A (2012) Adsorption characteristics of water vapor on the hypercrosslinked polymeric adsorbent. Chem Eng J 180:106–112

    Article  CAS  Google Scholar 

  28. Bratkowska D, Fontanals N, Borrull F, Cormack PAG, Sherrington DC, Marce RM (2010) Hydrophilic hypercrosslinked polymeric sorbents for the solid-phase extraction of polar contaminants from water. J Chromatogr A 1217:3238–3243

    Article  CAS  Google Scholar 

  29. Gurses A, Yalcin M, Sozbilir M, Dogar C (2003) The investigation of adsorption thermodynamics and mechanism of a cationic surfactant, CTAB, onto powdered active carbon. Fuel Process Technol 81:57–66

    Article  CAS  Google Scholar 

  30. Cumbal L, Greenleaf J, Leun D, SenGupta AK (2003) Polymer supported inorganic nanoparticles: characterization and environmental applications. React Funct Polym 54:167–180

    Article  CAS  Google Scholar 

  31. Elbhiri Z, Chevalier Y, Chovelon J-M, Jeffrezic-Renault N (2000) Grafting of phosphonate groups on the silica surface for the elaboration of ion-sensitive field-effect transistors. Talanta 52:495–507

    Article  CAS  Google Scholar 

  32. Lin Z, Zhang Y, Chen Y, Qian H (2012) Extraction and recycling utilization of metal ions (Cu2+, Co2+ and Ni2+) with magnetic polymer beads. J Chem Eng 200–202:104–110

    Article  Google Scholar 

  33. Pekel N, Sahiner N, Guven O (2001) Use of amidoximated acrylonitrile/N-vinyl 2 pyrrolidone interpenetrating polymer networks for uranyl ion adsorption from aqueous systems. J Appl Polym Sci 81:2324–2329

    Article  CAS  Google Scholar 

  34. Kawai O, Saito K, Sugita K (2000) Comparison of amidoxime adsorbents prepared by cografting methacrylic acid and 2-hydroxyethyl methacrylate with acrylonitrile onto polyethylene. Ind Eng Chem Res 39:2910–2915

    Article  CAS  Google Scholar 

  35. Cegłowski M, Schroeder G (2015) Removal of heavy metal ions with the use of chelating polymers obtained by grafting pyridine–pyrazole ligands onto polymethylhydrosiloxane. J Chem Eng 259:885–893

    Article  Google Scholar 

  36. Lia B, Liu F, Wang J, Ling C, Li L, Hou P, Li A, Bai Z (2012) Efficient separation and high selectivity for nickel from cobalt-solution by a novel chelating resin: batch, column and competition investigation. J Chem Eng 195–196:31–39

    Article  Google Scholar 

  37. Coşkun R, Soykan C, Saçak M (2006) Adsorption of copper(II), nickel(II) and cobalt(II) ions from aqueous solution by methacrylic acid/acrylamide monomer mixture grafted poly(ethylene terephthalate) fiber. Sep Purif Technol 49:107–114

    Article  Google Scholar 

  38. Bekheit MM, Nawar N, Addison AW, Abdel-Latif DA, Monier M (2011) Preparation and characterization of chitosan-grafted-poly(2-amino-4,5-pentamethylene-thiophene-3-carboxylic acid N -acryloyl-hydrazide) chelating resin for removal of Cu(II), Co(II) and Ni(II) metal ions from aqueous solutions. Int J Biol Macromol 48:558–565

    Article  CAS  Google Scholar 

  39. Monier M, Ayad DM, Wei Y, Sarhan AA (2010) Preparation and characterization of magnetic chelating resin based on chitosan for adsorption of Cu(II), Co(II), and Ni(II) ions. React Funct Polym 70:257–266

    Article  CAS  Google Scholar 

  40. Sales Jose AA, Faria Flavia P, Prado Alexandre GS, Claudio A (2004) Attachment of 2-aminomethylpyridine molecule onto grafted silica gel surface and its ability in chelating cations. Polyhedron 23:719–725

    Article  Google Scholar 

  41. Monier M, Ayad DM, Wei Y, Sarhan AA (2010) Adsorption of Cu(II), Co(II), and Ni(II) ions by modified magnetic chitosan chelating resin. J Hazard Mater 177:962–970

    Article  CAS  Google Scholar 

  42. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  43. Weber TW, Chakravot RK (1974) Pore and solid diffusion models for fixed bed adsorbents. AICHE J 20:228–238

    Article  CAS  Google Scholar 

  44. Sari A, Tuzen M, Citak D, Soylak M (2007) Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay. J Hazard Mater 149:283–291

    Article  CAS  Google Scholar 

  45. Wang XS, Huang J, Hua HQ, Wang J, Qin Y (2007) Determination of kinetic and equilibrium parameters of the batch adsorption of Ni(II) from aqueous solutions by Na-mordenite. J Hazard Mater 142:468–476

    Article  CAS  Google Scholar 

  46. Freundlich H (1906) Adsorption in solution. Phys Chem Soc 40:1361–1368

    Google Scholar 

  47. Temkin MJ, Phyzev V (1940) Recent modifications to Langmuir isotherms. Acta Physiochim 12:217–222

  48. Lagergren S, Svenska BK (1898) Zur theorie der sogenannten adsorption geloester stoffe. K Svenska Vetenskapsakad Handl 24:1–39

    Google Scholar 

  49. Ho YS (2006) Second order kinetic model for the sorption of cadmium on to tree fern: a comparison of linear and non linear methods. Water Res 40:119–125

    Article  CAS  Google Scholar 

  50. Weber WJ, Morris JC (1964) Equilibria and capacities for adsorption on carbon. J Sanit Eng Div 90:79–91

    CAS  Google Scholar 

  51. Sarici-Ozdemir C, Onal Y (2010) Equilibrium, kinetic and thermodynamic adsorptions of the environmental pollutant tannic acid onto activated carbon. Desalination 251:146–152

    Article  CAS  Google Scholar 

  52. Nilchi A, Saberi R, Moradi M, Azizpour H, Zarghami R (2011) Adsorption of cesium on copper hexacyanoferrate–PAN composite ion exchanger from aqueous solution. J Chem Eng 172:572–580

    Article  CAS  Google Scholar 

  53. Unlu N, Ersoz M (2007) Removal of heavy metal ions by using dithiocarbamated- sporopollenin. Sep Purif Technol 52:461–469

    Article  Google Scholar 

  54. Bandegharaei AH, Hosseini MS, Jalalabadi Y, Sarwghadi M, Nedaie M, Taherian A, Ghaznavi A, Eftekhari A (2011) Removal of Hg (II) from aqueous solutions using a novel impregnated resin containing 1-(2-thiazolylazo)-2-naphthol (TAN). J Chem Eng 168:1163–1173

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Shaaban.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaaban, A.F., Khalil, A.A., Radwan, M. et al. Synthesis, characterization and application of a novel nanometer-sized chelating resin for removal of Cu(II), Co(II) and Ni(II) ions from aqueous solutions. J Polym Res 24, 165 (2017). https://doi.org/10.1007/s10965-017-1323-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1323-3

Keywords

Navigation