Skip to main content
Log in

Effect of synthesis variables on viscoelastic properties of elastomers filled with carbonyl iron powder

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This work studies the influence of synthesis variables on the lineal viscoelastic properties of elastomers filled with soft magnetic particles. Three matrices [natural rubber (NR), high-temperature vulcanising silicone rubber (HTV-SR), and room-temperature vulcanising (RTV-SR)] and three volumetric particle contents (0%, 15%, and 30%) were studied. Anisotropic samples were synthesised with a softer matrix to obtain a larger magnetorheological (MR) effect, and the variation of their properties under an external magnetic field was examined. All samples were characterised within the lineal viscoelastic (LVE) region using a rheometer, because the MR effect is larger within this region. The influence of the matrix, particle content, and pre-structure on the viscoelastic properties of the synthesised samples was studied. The storage and loss modulus increased with the frequency owing to the viscoelastic behaviour of an elastomer in the rubbery phase. Both moduli also increased with the filler content. The influence of the filler is dependent on the matrix, and the maximum variation was seen in the NR-based samples. However, the maximum MR effect was seen in the samples with a softer matrix, and the effect was enhanced in the anisotropic samples. In this work, the MR effect on the loss modulus was studied, and the tendencies were found to be similar to those of the storage modulus. The main contribution of this work is that all dynamic behaviour results were comparable because all synthesis variables and characterisation conditions were identical. Therefore, how the particle content, frequency, and magnetic field affects each matrix can be studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen L, Gong XL, Li WH (2008) Effect of carbon black on the mechanical performances of magnetorheological elastomers. Polym Test 27:340–345. doi:10.1016/j.polymertesting.2007.12.003

    Article  CAS  Google Scholar 

  2. Chen L, Gong X, Jiang W, Yao J, Deng H, Li W (2007) Investigation on magnetorheological elastomers based on natural rubber. J Mater Sci 42:5483–5489. doi:10.1007/s10853-006-0975-x

    Article  CAS  Google Scholar 

  3. Chen L, Gong X, Li W (2008) Damping of Magnetorheological Elastomers. Chinese J Chem Phys 21:581–585. doi:10.1088/1674-0068/21/06/581-585

    Article  CAS  Google Scholar 

  4. Lokander M, Stenberg B (2003) Improving the magnetorheological effect in isotropic magnetorheological rubber materials. Polym Test 22:677–680. doi:10.1016/S0142-9418(02)00175-7

    Article  CAS  Google Scholar 

  5. Stepanov GV, Chertovich AV, Kramarenko EY (2012) Magnetorheological and deformation properties of magnetically controlled elastomers with hard magnetic filler. J Magn Magn Mater 324:3448–3451. doi:10.1016/j.jmmm.2012.02.062

    Article  CAS  Google Scholar 

  6. Yu M, Qi S, Fu J, Zhu M (2015) A high-damping magnetorheological elastomer with bi-directional magnetic-control modulus for potential application in seismology. Appl Phys Lett 107:111901. doi:10.1063/1.4931127

    Article  Google Scholar 

  7. Ivaneyko D, Toshchevikov VP, Saphiannikova M, Heinrich G (2011) Magneto-sensitive elastomers in a homogeneous magnetic field: A regular rectangular lattice model. Macromol Theory Simul 20:411–424. doi:10.1002/mats.201100018

    Article  CAS  Google Scholar 

  8. Melenev P, Raikher Y, Stepanov G, Rusakov V, Polygalova L (2011) Modeling of the Field-Induced Plasticity of Soft Magnetic Elastomers. J Intell Mater Syst Struct 22:531–538. doi:10.1177/1045389X11403819

    Article  Google Scholar 

  9. Gong X, Fan Y, Xuan S, Xu Y, Peng C (2012) Control of the damping properties of magnetorheological elastomers by using polycaprolactone as a temperature-controlling component. Ind Eng Chem Res 51:6395–6403. doi:10.1021/ie300317b

    Article  CAS  Google Scholar 

  10. Hu Y, Wang YL, Gong XL, Gong XQ, Zhang XZ, Jiang WQ, Zhang PQ, Chen ZY (2005) New magnetorheological elastomers based on polyurethane/Si-rubber hybrid. Polym Test 24:324–329. doi:10.1016/j.polymertesting.2004.11.003

    Article  CAS  Google Scholar 

  11. Fan Y, Gong X, Xuan S, Zhang W, Zheng J, Jiang W (2011) Interfacial friction damping properties in magnetorheological elastomers. Smart Mater Struct 20:35007. doi:10.1088/0964-1726/20/3/035007

    Article  Google Scholar 

  12. Ju BX, Yu M, Fu J, Yang Q, Liu XQ, Zheng X (2012) A novel porous magnetorheological elastomer: preparation and evaluation. Smart Mater Struct 21:35001. doi:10.1088/0964-1726/21/3/035001

    Article  Google Scholar 

  13. Zhu J-T, Xu Z-D, Guo Y-Q (2012) Magnetoviscoelasticity parametric model of an MR elastomer vibration mitigation device. Smart Mater Struct 21:75034. doi:10.1088/0964-1726/21/7/075034

    Article  Google Scholar 

  14. Lokander M, Stenberg B (2003) Performance of isotropic magnetorheological rubber materials. Polym Test 22:245–251. doi:10.1016/S0142-9418(02)00043-0

    Article  CAS  Google Scholar 

  15. Gordaninejad F, Wang X, Mysore P (2012) Behavior of thick magnetorheological elastomers. J Intell Mater Syst Struct 23:1033–1039. doi:10.1177/1045389X12448286

    Article  Google Scholar 

  16. Ge L, Gong X, Fan Y, Xuan S (2013) Preparation and mechanical properties of the magnetorheological elastomer based on natural rubber/rosin glycerin hybrid matrix. Smart Mater Struct 22:115029. doi:10.1088/0964-1726/22/11/115029

    Article  Google Scholar 

  17. Varga Z, Filipcsei G, Zrínyi M (2006) Magnetic field sensitive functional elastomers with tuneable elastic modulus. Polymer (Guildf) 47:227–233. doi:10.1016/j.polymer.2005.10.139

    Article  CAS  Google Scholar 

  18. Li J, Gong X, Xu Z, Jiang W (2008) The effect of pre-structure process on magnetorheological elastomer performance. Int J Mater Res 99:1358–1364. doi:10.3139/146.101775

    Article  CAS  Google Scholar 

  19. Sun TL, Gong XL, Jiang WQ, Li JF, Xu ZB, Li WH (2008) Study on the damping properties of magnetorheological elastomers based on cis-polybutadiene rubber. Polym Test 27:520–526. doi:10.1016/j.polymertesting.2008.02.008

    Article  CAS  Google Scholar 

  20. Payne AR (1962) The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I J Appl Polym Sci 6:57–63. doi:10.1002/app.1962.070061906

    Article  CAS  Google Scholar 

  21. Ferry JD (1980) Viscoelastic Properties of Polymers, 3rd edn. Wiley, New York,

    Google Scholar 

  22. Qiao X, Lu X, Li W, Chen J, Gong X, Yang T, Li W, Sun K, Chen X (2012) Microstructure and magnetorheological properties of the thermoplastic magnetorheological elastomer composites containing modified carbonyl iron particles and poly(styrene- b -ethylene-ethylenepropylene- b -styrene) matrix. Smart Mater Struct 21:115028. doi:10.1088/0964-1726/21/11/115028

    Article  Google Scholar 

  23. Agirre-Olabide I, Berasategui J, Elejabarrieta MJ, Bou-Ali MM (2014) Characterization of the linear viscoelastic region of magnetorheological elastomers. J Intell Mater Syst Struct 25:2074–2081. doi:10.1177/1045389X13517310

    Article  CAS  Google Scholar 

  24. Agirre-Olabide I, Elejabarrieta MJ, Bou-Ali MM (2015) Matrix dependence of the linear viscoelastic region in magnetorheological elastomers. J Intell Mater Syst Struct 26:1880–1886. doi:10.1177/1045389X15580658

    Article  CAS  Google Scholar 

  25. Dong X, Ma N, Qi M, Li J, Chen R, Ou J (2012) The pressure-dependent MR effect of magnetorheological elastomers. Smart Mater Struct 21:75014. doi:10.1088/0964-1726/21/7/075014

    Article  Google Scholar 

  26. Jones DIG (2001) Handbook of viscoelastic vibration damping. John Wiley & Sons Ltd, Chichester,

    Google Scholar 

  27. Schubert G, Harrison P (2015) Large-strain behaviour of Magneto-Rheological Elastomers tested under uniaxial compression and tension, and pure shear deformations. Polym Test 42:122–134. doi:10.1016/j.polymertesting.2015.01.008

    Article  CAS  Google Scholar 

  28. Nashif AD, Jones DIG, Henderson JP (1985) Vibration damping. John Wiley & Sons, New York,

    Google Scholar 

  29. Phewthongin N, Saeoui P, Sirisinha C (2006) Rheological behavior of CPE/NR blends filled with precipitated silica. J Appl Polym Sci 100:2565–2571. doi:10.1002/app.22550

    Article  CAS  Google Scholar 

  30. Aloui S, Klüppel M (2015) Magneto-rheological response of elastomer composites with hybrid-magnetic fillers. Smart Mater Struct 24:25016. doi:10.1088/0964-1726/24/2/025016

    Article  Google Scholar 

  31. Raa Khimi S, Pickering KL, Mace BR (2015) Dynamic properties of magnetorheological elastomers based on iron sand and natural rubber. J Appl Polym Sci 132:41506. doi:10.1002/app.41506

    Google Scholar 

  32. Ju B, Tang R, Zhang D, Yang B, Yu M, Liao C (2015) Temperature-dependent dynamic mechanical properties of magnetorheological elastomers under magnetic field. J Magn Magn Mater 374:283–288. doi:10.1016/j.jmmm.2014.08.012

    Article  CAS  Google Scholar 

  33. Han Y, Zhang Z, Faidley LE, Hong W (2012) Microstructure-based modeling of magneto-rheological elastomers. Proc. SPIE, Behavior and Mechanics of Multifunctional Materials and Composites, 8342:83421B. doi:10.1117/12.925492

  34. Jung HS, Kwon SH, Choi HJ, Jung JH, Kim YG (2016) Magnetic carbonyl iron/natural rubber composite elastomer and its magnetorheology. Compos Struct 136:106–112. doi:10.1016/j.compstruct.2015.10.008

    Article  Google Scholar 

  35. Yang C, Fu J, Yu M, Zheng X, Ju B (2015) A new magnetorheological elastomer isolator in shear-compression mixed mode. J Intell Mater Syst Struct 26:1290–1300. doi:10.1177/1045389X14541492

    Article  CAS  Google Scholar 

  36. Lu X, Qiao X, Watanabe H, Gong X, Yang T, Li W, Sun K, Li M, Yang K, Xie H, Yin Q, Wang D, Chen X (2012) Mechanical and structural investigation of isotropic and anisotropic thermoplastic magnetorheological elastomer composites based on poly(styrene-b-ethylene-co-butylene-b-styrene) (SEBS). Rheol Acta 51:37–50. doi:10.1007/s00397-011-0582-x

    Article  CAS  Google Scholar 

  37. Boczkowska A, Awietjan SF, Wroblewski R (2007) Microstructure–property relationships of urethane magnetorheological elastomers. Smart Mater Struct 16:1924–1930. doi:10.1088/0964-1726/16/5/049

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Department of Education of the Basque Government for the Research Predoc Grant PRE_2014_1_284, AVISANI (PI-2016-1-0026), ACTIMAT, IT009-16 and the AVISANI (DPI2015-71198-R) research project from the Spanish government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Jesús Elejabarrieta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agirre-Olabide, I., Elejabarrieta, M.J. Effect of synthesis variables on viscoelastic properties of elastomers filled with carbonyl iron powder. J Polym Res 24, 139 (2017). https://doi.org/10.1007/s10965-017-1299-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1299-z

Keywords

Navigation