Skip to main content

Advertisement

Log in

Chitosan: Application in tissue engineering and skin grafting

  • REVIEW PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Tissue Engineering and skin grafting, an essential part of regenerative medicine is one of the fastest growing biomedical fields which could offer an important therapeutic strategy for management of hard to heal wounds. 2D and 3D polymeric scaffolds are prerequisites in this field to promote cell adhesion, proliferation and tissue regeneration. Convergence of technology and research has successfully unveiled unknown properties of Chitosan as a bioactive polymer. Natural abundance, cost effectiveness, biodegradability, biocompatibility and wound healing capabilities of chitosan and its derivatives has drawn the attention of many researchers for its use as an alternative for fabrication of a scaffold in tissue engineering and skin graft. However lower mechanical strength and solubility has limited its application in the biomedical field. It has been found that the derivatization and combination with other polymers can successfully overcome these limitations. This review focuses on the applicability of chitosan and its derivatives in combination with other polymers in tissue engineering and skin grafting along with the novel scaffold fabrication techniques. Studies so far have demonstrated the potential of chitosan and its derivative as a scaffold in the field of regenerative medicine. However, even if the promising results obtained from in-vitro and preclinical studies prove the efficacy of chitosan scaffolds it still has a long way to go to be used in clinical set ups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

TE:

Tissue Engineering

SG:

Skin Graft

2D:

2 Dimensional

3D:

3 Dimensional

ECM:

Extra Cellular Matrix

PLA:

Polylactic acid

PLGA:

Poly (lactic-co-glycolic) acid

PVP:

Poly Vinyl Pyrrolidone

PCL:

Poly-Ɛ-caprolactone

DA:

Degree of acetylation

DD:

Degree of deacetylation.

CORP:

Computer Operated Rapid Prototyping

GAGs:

Glycosaminoglycan

IBP:

Internal Gas Bubbling Process

TIPS:

Thermally Induced Phase Separation

BMP 2:

Bone Morphogenetic Protein

NT-3:

Neurotrophin −3

chABC:

Chondroitinase ABC

MNPs:

Magnetic Nanoparticles.

VAM:

Virus Activated Matrix.

TGF- β3:

Tissue Growth Factor-β3

HA:

Hydroxy appetite

CS:

Chitosan

Gel:

Gelatin

CNW:

Cellulose Nanowhiskers.

DMEM/F12:

Dulbecco’s Modified Eagle Medium: Nutrient mixture F-12

VEGF:

Vascular Endothelial Growth Factor

PLAGA:

Poly lactic acid-glycolic acid

GPTMS:

γ-Glycidoxypropyltrimethoxy Silane

nsHA:

Non-Sintered Hydroxyapatite

sHA:

Sintered Hydroxyapatite

SEM:

Scanning Electron Microscopy

TPU:

Thermoplastic polyurethane

CCS:

Collagen - Chitosan scaffolds

BMSCs:

Bone marrow mesenchymal stem cells

CS-SF:

Chitosan- Silk fibroin

TGF- β1:

Transforming Growth Factor-β1

TCP:

Tricalcium Phosphate

RhBMP-2:

Recombined human Bone Morphology Protein

QCS:

Quaternized Chitosan

NCMS:

Nanofiber Chitosan Microspheres

PQQ:

Pyrroloquinoline quinone

P-CGMs:

Macroporous Chitosan-Gelatin B Microspheres

PHBV:

Poly(3-hydro-butyrate-co-3-hydroxy valerate

CECS/PVA:

Carboxy ethyl Chitosan/poly vinyl alcohol

References

  1. Jiang T, James V (2014) Chitosan as a biomaterial: structure, properties, and applications in tissue engineering and drug delivery. Elsevier, USA. (yeh book kaa ref h so uska format aisa hi tha as per JPR)

  2. Lee SJ, Yoo JJ, Atala A (2014) Recent applications of polymeric biomaterials and stem cells in tissue engineering and regenerative medicine Polymer Korea 38:113–128

    Article  CAS  Google Scholar 

  3. Sivashankari PR, Prabaharan M (2016) Prospects of chitosan-based scaffolds for growth factor release in tissue engineering Int J Biol Macromolec 93:1382

    Article  CAS  Google Scholar 

  4. Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues Nat Nanotechnol 6:13–22

    Article  CAS  Google Scholar 

  5. Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, Cho CS (2008) Chitosan and its derivatives for tissue engineering applications Biotechnol Adv 26:1–21

    Article  CAS  Google Scholar 

  6. Mogoşanu GD, Grumezescu AM (2014) Natural and synthetic polymers for wounds and burns dressing Int J Pharm 463:127–136

    Article  CAS  Google Scholar 

  7. Pan Z, Ding J (2012) Poly (lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine Interface focus 2:366–377

    Article  Google Scholar 

  8. Sung HJ, Meredith C, Johnson C, Galis ZS (2004) The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis Biomaterials 25:5735–5742

    Article  CAS  Google Scholar 

  9. Kim H, Lee J (2016) Strategies to maximize the potential of marine biomaterials as a platform for cell therapy Mar drugs 14:2

    Google Scholar 

  10. Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications Mar drugs 13:1133–1174

    Article  CAS  Google Scholar 

  11. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review Int J Polym Sci. doi:10.1155/2011/290602

  12. Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S, Ramakrishna S (2012) Advances in polymeric systems for tissue engineering and biomedical applications Macromol Biosci 12:286–311

    Article  CAS  Google Scholar 

  13. Domard A (2011) A perspective on 30 years research on chitin and chitosan Carbohydr Polym 84:696–703

    Article  CAS  Google Scholar 

  14. Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications Prog Polym Sci 36:981–1014

    Article  CAS  Google Scholar 

  15. Cheung RCF, Ng TB, Wong JH, Chan WY (2015) Chitosan: an update on potential biomedical and pharmaceutical applications Mar drugs 13:5156–5186

    Article  CAS  Google Scholar 

  16. Liu X, Ma L, Mao Z, Gao C (2011) Chitosan-based biomaterials for tissue repair and regeneration Adv Polym Sci 244:81–127

    Article  CAS  Google Scholar 

  17. Kumirska J, Weinhold MX, Thöming J, Stepnowski P (2011) Biomedical activity of chitin/chitosan based materials—influence of physicochemical properties apart from molecular weight and degree of N-acetylation Polymers 3:1875–1901

    Article  CAS  Google Scholar 

  18. Ong SY, Wu J, Moochhala SM, Tan MH, Lu J (2008) Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties Biomaterials 29:4323–4332

    Article  CAS  Google Scholar 

  19. Qasim SB, Delaine-Smith RM, Fey T, Rawlinson A, Rehman IU (2015) Freeze gelated porous membranes for periodontal tissue regeneration Acta Biomater 23:317–328

    Article  CAS  Google Scholar 

  20. Aranaz I, Marian M, Ruth H, Inés P, Beatriz M, Niuris A, Gemma G, Ángeles H (2009) Functional characterization of chitin and chitosan Curr Chem Biol 3:203–230

    CAS  Google Scholar 

  21. Wang J, Wang L, Zhou Z, Lai H, Xu P, Liao L, Wei J (2016) Biodegradable polymer membranes applied in guided bone/tissue regeneration: a review Polymers 8:115

    Article  CAS  Google Scholar 

  22. Thanou M, Verhoef JC, Junginger HE (2001) Oral drug absorption enhancement by chitosan and its derivatives Adv Drug Deliv 52:117–126

    Article  CAS  Google Scholar 

  23. Tanodekaew S, Prasitsilp M, Swasdison S, Thavornyutikarn B, Pothsree T, Pateepasen R (2004) Preparation of acrylic grafted chitin for wound dressing application Biomaterials 25:1453–1460

    Article  CAS  Google Scholar 

  24. Yang J, Tian F, Wang Z, Wang Q, Zeng YJ, Chen SQ (2008) Effect of chitosan molecular weight and deacetylation degree on hemostasis J Biomed Mater Res B Appl Biomater 84:131–137

    Article  CAS  Google Scholar 

  25. Levengood SKL, Zhang M (2014) Chitosan-based scaffolds for bone tissue engineering J Mater Chem B 2:3161–3184

    Article  CAS  Google Scholar 

  26. Dhawan S, Singla AK, Sinha VR (2004) Evaluation of mucoadhesive properties of chitosan microspheres prepared by different methods AAPS PharmSciTech 5:122–128

    Article  Google Scholar 

  27. Mima S, Miya M, Iwamoto R, Yoshikawa S (1983) Highly deacetylated chitosan and its properties J Appl Polym Sci 28:1909–1917

    Article  CAS  Google Scholar 

  28. Huei CR, Hwa HD (1996) Effect of molecular weight of chitosan with the same degree of deacetylation on the thermal, mechanical, and permeability properties of the prepared membrane Carbohydr Polym 29:353–358

    Article  Google Scholar 

  29. Tangsadthakun C, Kanokpanont S, Sanchavanakit N, Pichyangkura R, Banaprasert T, Tabata Y, Damrongsakkul S (2007) The influence of molecular weight of chitosan on the physical and biological properties of collagen/chitosan scaffolds J Biomater Sci Polym Ed 18:147–163

    Article  CAS  Google Scholar 

  30. Park PJ, Je JY, Jung WK, Ahn CB, Kim SK (2004) Anticoagulant activity of heterochitosans and their oligosaccharide sulfates Eur Food Res Technol 219:529–533

    Article  CAS  Google Scholar 

  31. Smith J, Wood E, Dornish M (2004) Effect of chitosan on epithelial cell tight junctions Pharm Res 21:43–49

    Article  CAS  Google Scholar 

  32. Chung YC, Chen CY (2008) Antibacterial characteristics and activity of acid-soluble chitosan Bioresour Technol 99:2806–2814

    Article  CAS  Google Scholar 

  33. Kingkaew J, Kirdponpattara S, Sanchavanakit N, Pavasant P, Phisalaphong M (2014) Effect of molecular weight of chitosan on antimicrobial properties and tissue compatibility of chitosan-impregnated bacterial cellulose films Biotechnol Bioprocess Eng 19:534–544

    Article  CAS  Google Scholar 

  34. Okamoto Y, Kawakami K, Miyatake K, Morimoto M, Shigemasa Y, Minami S (2002) Analgesic effects of chitin and chitosan Carbohydr Polym 49:249–252

    Article  CAS  Google Scholar 

  35. Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL (2007) Nanofiber technology: designing the next generation of tissue engineering scaffolds Adv Drug Deliv Rev 59:1413–1433

    Article  CAS  Google Scholar 

  36. Dutta PK, Dutta J, Tripathi VS (2004) Chitin and chitosan: chemistry, properties and applications J Sci Ind Res 63:20–31

    CAS  Google Scholar 

  37. Hanif M, Zaman M, Qureshi S (2015) Thiomers: a blessing to evaluating era of pharmaceuticals Int J Polym Sci. doi:10.1155/2015/146329

  38. Semenyuk PI, Moiseeva EV, Stroylova YY, Lotti M, Izumrudov VA, Muronetz VI (2015) Sulfated and sulfonated polymers are able to solubilize efficiently the protein aggregates of different nature Arch Biochem Biophys 567:22–29

    Article  CAS  Google Scholar 

  39. Toh EKW, Chen HY, Lo YL, Huang SJ, Wang LF (2011) Succinated chitosan as a gene carrier for improved chitosan solubility and gene transfection Nanomedicine 7:174–183

    Article  CAS  Google Scholar 

  40. Zakhem E, Bitar KN (2015) Development of chitosan scaffolds with enhanced mechanical properties for intestinal tissue engineering applications J Funct Biomater 6:999–1011

    Article  CAS  Google Scholar 

  41. Mao JS, Yin YJ, De Yao K (2003) The properties of chitosan–gelatin membranes and scaffolds modified with hyaluronic acid by different methods Biomaterials 24:1621–1629

    Article  CAS  Google Scholar 

  42. Chandy T, Sharma CP (1990) Chitosan-as a biomaterial Int J Artif Organs 18:1–24

    CAS  Google Scholar 

  43. Onsosyen E, Skaugrud O (1990) Metal recovery using chitosan J Chem Technol 49:395–404

    Google Scholar 

  44. Felt O, Buri P, Gurny R (1998) Chitosan: a unique polysaccharide for drug delivery Drug Dev Ind Pharm 24:979–993

    Article  CAS  Google Scholar 

  45. Han LK, Kimura Y, Okuda H (1999) Reduction in fat storage during chitin-chitosan treatment in mice fed a high-fat diet Int J Obes Relat Metab Disord 23:174

    Article  CAS  Google Scholar 

  46. Zhang Y, Zhang M (2002) Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants J Biomed Mater Res 61:1–8

    Article  CAS  Google Scholar 

  47. Anitha A, Sowmya S, Kumar P S, Deepthi, S, Chennazhi, K. P, Ehrlich, H., Jayakumar, R. (2014). Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667

  48. Murugan R, Ramakrishna S (2007) Design strategies of tissue engineering scaffolds with controlled fiber orientation Tissue Eng 13:1845–1866

    Article  CAS  Google Scholar 

  49. Chen Y, Liao HF, Peng Q, Wang W, Cao YX, Dai YH (2015) Research on Data Management System for Live Detection Appl Mech Mater 734:22–26

    Google Scholar 

  50. Croisier F, Jerome C (2013) Chitosan-based biomaterials for tissue engineering Eur Polym J 49:780–792

    Article  CAS  Google Scholar 

  51. Seol YJ, Lee JY, Park YJ, Lee YM, Ku Y, Rhyu IC, Chung CP (2004) Chitosan sponges as tissue engineering scaffolds for bone formation Biotechnol Lett 26:1037–1041

    Article  CAS  Google Scholar 

  52. Kumar PS, Raj NM, Praveen G, Chennazhi KP, Nair SV, Jayakumar R (2012) In vitro and in vivo evaluation of microporous chitosan hydrogel/nanofibrin composite bandage for skin tissue regeneration Tissue Eng Part A 19:3–4

    Google Scholar 

  53. Ramay HR, Zhang M (2003) Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods. Biomaterials 24(19):3293–3302

    Article  CAS  Google Scholar 

  54. Madihally SV, Matthew HW (1999) Porous chitosan scaffolds for tissue engineering Biomaterials 20:1133–1142

    Article  CAS  Google Scholar 

  55. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications Biomaterials 24:4337–43514

    Article  CAS  Google Scholar 

  56. Arakawa C, Ng R, Tan S, Kim S, Wu B, Lee M (2017) Photopolymerizable chitosan–collagen hydrogels for bone tissue engineering J Tissue Eng Regen Med 11:164–174

    Article  CAS  Google Scholar 

  57. Jin R, Teixeira LM, Dijkstra PJ, Karperien M, Van Blitterswijk CA, Zhong ZY, Feijen J (2009) Injectable chitosan-based hydrogels for cartilage tissue engineering Biomaterials 30:2544–2551

    Article  CAS  Google Scholar 

  58. Boucard N, Viton C, Agay D, Mari E, Roger T, Chancerelle Y, Domard A (2007) The use of physical hydrogels of chitosan for skin regeneration following third-degree burns Biomaterials 28:3478–3488

    Article  CAS  Google Scholar 

  59. Vasita R, Katti DS (2006) Nanofibers and their applications in tissue engineering Int J Nanomedicine 1:15–30

    Article  CAS  Google Scholar 

  60. Dahlin RL, Kasper FK, Mikos AG (2011) Polymeric nanofibers in tissue engineering Tissue Eng Part B Rev 17:349–364

    Article  CAS  Google Scholar 

  61. Kucharska M, Walenko K, Butruk B, Brynk T, Heljak M, Ciach T (2010) Fabrication and characterization of chitosan microspheres agglomerated scaffolds for bone tissue engineering Mater Lett 64:1059–1062

    Article  CAS  Google Scholar 

  62. Oliveira MB, Mano JF (2011) Polymer-based microparticles in tissue engineering and regenerative medicine Biotechnol Prog 27:897–912

    Article  CAS  Google Scholar 

  63. Tan H, Wu J (2009) Lao L, Gao C Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering Acta Biomater 5:328–337

    CAS  Google Scholar 

  64. Nukavarapu SP, Kumbar SG, Brown JL, Krogman NR, Weikel AL, Hindenlang MD, Laurencin CT (2008) Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissue engineering Biomacromolecules 9:1818

    Article  CAS  Google Scholar 

  65. García Cruz DM, Escobar Ivirico JL, Gomes MM, Gómez Ribelles JL, Sánchez MS, Reis RL, Mano JF (2008) Chitosan microparticles as injectable scaffolds for tissue engineering J Tissue Eng Regen Med 2:378–380

    Article  CAS  Google Scholar 

  66. Moroni L, De Wijn JR, Van Blitterswijk CA (2008) Integrating novel technologies to fabricate smart scaffolds J Biomater Sci Polym Ed 19:543–572

    Article  CAS  Google Scholar 

  67. Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R (1993) Preparation of poly (glycolic acid) bonded fiber structures for cell attachment and transplantation J Biomed Mater Res 27:183–189

    Article  CAS  Google Scholar 

  68. Kim BS, Mooney DJ (1998) Engineering smooth muscle tissue with a predefined structure J Biomed Mater Res 41:322–332

    Article  CAS  Google Scholar 

  69. Kim BS, Mooney DJ (1998) Development of biocompatible synthetic extracellular matrices for tissue engineering Trends Biotechnol 16:224–230

    Article  CAS  Google Scholar 

  70. Lim JI, Lee YK, Shin JS, Lim KJ (2011) Preparation of interconnected porous chitosan scaffolds by sodium acetate particulate leaching J Biomater Sci Polym Ed. 22:1319–1329

    Article  CAS  Google Scholar 

  71. Ma Z, Kotaki M, Inai R, Ramakrishna S (2005) Potential of nanofiber matrix as tissue-engineering scaffolds Tissue Eng 11:101–109

    Article  Google Scholar 

  72. Schugens C, Maquet V, Grandfils C, Jérôme R, Teyssie P (1996) Polylactide macroporous biodegradable implants for cell transplantation II preparation of polylactide foams by liquid-liquid phase separation J Biomed Mater Res 30:449–461

    Article  CAS  Google Scholar 

  73. Schugens C, Maquet V, Grandfils C, Jérôme R, Teyssie P (1996) Biodegradable and macroporous polylactide implants for cell transplantation: 1 Preparation of macroporous polylactide supports by solid-liquid phase separation Polymer 37:1027–1038

    CAS  Google Scholar 

  74. Nam YS, Park TG (1999) Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation J Biomed Mater Res 47:8–17

    Article  CAS  Google Scholar 

  75. Sultana N, Mokhtar M, Hassan MI, Jin RM, Roozbahani F, Khan TH (2015) Chitosan-based Nanocomposite scaffolds for tissue engineering applications Mater Manuf Process 30:1–6

    Article  CAS  Google Scholar 

  76. Roh IJ, Kwon IC (2002) Fabrication of a pure porous chitosan bead matrix: influences of phase separation on the microstructure. J Biomater Sci Polym Ed 13:769–782

    Article  CAS  Google Scholar 

  77. Niu X, Feng Q, Wang M, Guo X, Zheng Q (2009) Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2 J Control Release 134:111–117

    Article  CAS  Google Scholar 

  78. Zhao F, Yin Y, Lu WW, Leong JC, Zhang W, Zhang J, Yao K (2002) Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds Biomaterials 23:3227–3234

    Article  CAS  Google Scholar 

  79. Modaress MP, Mirzadeh H, Zandi M (2012) Fabrication of a porous wall and higher interconnectivity scaffold comprising gelatin/chitosan via combination of salt-leaching and lyophilization methods Iran Polym J 21:191–200

    Article  CAS  Google Scholar 

  80. Ji C, Annabi N, Khademhosseini A, Dehghani F (2011) Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2 Acta Biomater 7:1653–1664

    Article  CAS  Google Scholar 

  81. Duarte ARC, Mano JF, Reis RL (2010) Preparation of chitosan scaffolds for tissue engineering using supercritical fluid technology Mater Sci Forum 636:22–25

    Article  CAS  Google Scholar 

  82. Cardea S, Pisanti P, Reverchon E (2010) Generation of chitosan nanoporous structures for tissue engineering applications using a supercritical fluid assisted process J Supercrit Fluids 54:290–295

    Article  CAS  Google Scholar 

  83. Kumari R, Dutta PK (2010) Physicochemical and biological activity study of genipin-crosslinked chitosan scaffolds prepared by using supercritical carbon dioxide for tissue engineering applications Int J Biol Macromolec 46:261–266

    Article  CAS  Google Scholar 

  84. Garg T, Chanana A, Joshi R (2012) Preparation of chitosan scaffolds for tissue engineering using freeze drying technology IOSR J Pharm 2:72–73

    Google Scholar 

  85. Peter M, Ganesh N, Selvamurugan N, Nair SV, Furuike T, Tamura H, Jayakumar R (2010) Preparation and characterization of chitosan–gelatin/nano hydroxyapatite composite scaffolds for tissue engineering applications Carbohyd Polym 80:687–694

    Article  CAS  Google Scholar 

  86. Niu X, Li X, Liu H, Zhou G, Feng Q, Cui F, Fan Y (2012) Homogeneous chitosan/poly (L-lactide) composite scaffolds prepared by emulsion freeze-drying J Biomater Sci Polym Ed 23:391–404

    Article  CAS  Google Scholar 

  87. Mao JS, Zhao LG, Yin YJ, De Yao K (2003) Structure and properties of bilayer chitosan–gelatin scaffolds Biomaterials 24:1067–1074

    Article  CAS  Google Scholar 

  88. Duarte ARC, Mano JF, Reis RL (2009) Preparation of chitosan scaffolds loaded with dexamethasone for tissue engineering applications using supercritical fluid technology Eur Polym J 45:141–148

    Article  CAS  Google Scholar 

  89. Fukasawa T, Deng ZY, Ando M, Ohji T, Goto Y (2001) Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process J Mater Sci 36:2523–2527

    Article  CAS  Google Scholar 

  90. Pourhaghgouy M, Zamanian A, Shahrezaee M, Masouleh MP (2016) Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass Mater Sci Eng C 58:180–186

    Article  CAS  Google Scholar 

  91. Gaudillere C, Serra JM (2016) Freeze-casting: fabrication of highly porous and hierarchical ceramic supports for energy applications Bol Soc Ceram Vidr. doi:10.1016/j.bsecv.2016.02.002

  92. Deville S, Saiz E, Tomsia AP (2006) Freeze casting of hydroxyapatite scaffolds for bone tissue engineering Biomaterials 27:5480–5489

    Article  CAS  Google Scholar 

  93. Kim JH, Lee JH, Yang TY, Yoon SY, Kim BK, Park HC (2011) TBA-based freeze/gel casting of porous hydroxyapatite scaffolds Ceram Int 37:2317–2322

    Article  CAS  Google Scholar 

  94. Jafarkhani M, Fazlali A, Moztarzadeh F, Moztarzadeh Z, Mozafari M (2012) Fabrication and characterization of PLLA/chitosan/nano calcium phosphate scaffolds by freeze-casting technique Ind Eng Chem Res 51:9241–9249

    Article  CAS  Google Scholar 

  95. Wegst UG, Schecter M, Donius AE, Hunger PM (2010) Biomaterials by freeze casting Philos Tran R Soc A 368:2099–2121

    Article  CAS  Google Scholar 

  96. Wang D, Romer F, Connell L, Walter C, Saiz E, Yue S, Lee PD, McPhail DS, Hanna JV, Jones JR (2015) Highly flexible silica/chitosan hybrid scaffolds with oriented pores for tissue regeneration J Mater Chem B 3:7560–7576

    Article  CAS  Google Scholar 

  97. Deville S (2010) Freeze-casting of porous biomaterials: structure, properties and opportunities Materials 3:1913–1927

    Article  CAS  Google Scholar 

  98. Francis NL, Hunger PM, Donius AE, Riblett BW, Zavaliangos A, Wegst UG, Wheatley MA (2013) An ice templated, linearly aligned chitosan-alginate scaffold for neural tissue engineering J Biomed Mater Res Part A 101:3493–3503

    Article  CAS  Google Scholar 

  99. Francis NL, Hunger PM, Donius AE, Wegst UGK, Wheatley MA (2014) Strategies for neurotrophin-3 and chondroitinase ABC release from freeze-cast chitosan–alginate nerve-guidance scaffolds J Tissue Eng Regen Med. doi:10.1002/term.1912

  100. Shamsa AR, Zamanian A, Mozafari M (2016) Superparamagnetic responsive silk fibroin/chitosan/magnetite scaffolds with tunable pore structures for bone tissue engineering applications Mater Sci Eng C. doi:10.1016/j.msec.2016.09.039

  101. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs Nature Biotechnol 32:773–785

    Article  CAS  Google Scholar 

  102. Reed EJ, Klumb L, Koobatian M, Viney C (2009) Biomimicry as a route to new materials: what kinds of lessons are useful? Philos Trans Roy Soc London Ser A 367:1571–1585

    Article  CAS  Google Scholar 

  103. Sun K, Wei TS, Ahn BY, Seo JY, Dillon SJ, Lewis JA (2013) 3D printing of interdigitated li-ion microbattery architectures Adv Mater 25:4539–4543

    Article  CAS  Google Scholar 

  104. Muth JT, Vogt DM, Truby RL, Mengüç Y, Kolesky DB, Wood RJ, Lewis JA (2014) Embedded 3D printing of strain sensors within highly stretchable elastomers Adv Mater 26:6307–6312

    Article  CAS  Google Scholar 

  105. Ahn BY, Duoss EB, Motala MJ, Guo X, Park SI, Xiong Y, Yoon J, Nuzzo RG, Rogers JA, Lewis J (2009) Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes Science 323:1590–1593

    Article  CAS  Google Scholar 

  106. Symes MD, Kitson PJ, Yan J, Richmond CJ, Cooper GJ, Bowman RW, Vilbrandt T, Cronin L (2012) Integrated 3D-printed reactionware for chemical synthesis and analysis Nat Chem 4:349–354

    Article  CAS  Google Scholar 

  107. Chia HN, Wu BM (2015) Recent advances in 3D printing of biomaterials J Biol Eng 9:1

    Article  CAS  Google Scholar 

  108. Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, Kates SL, Awad HA (2014) 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration Biomaterials 35:4026–4034

    Article  CAS  Google Scholar 

  109. Korpela J, Kokkari A, Korhonen H, Malin M, Närhi T, Seppälä J (2013) Biodegradable and bioactive porous scaffold structures prepared using fused deposition modeling J Biomed Mater Res Part B Appl Biomater 101:610–619

    Article  CAS  Google Scholar 

  110. Lee JY, Choi B, Wu B, Lee M (2013) Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering Biofabrication 5:045003

    Article  CAS  Google Scholar 

  111. Khan F, Tanaka M, Ahmad SR (2015) Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices J Mater Chem B 3:8224–8249

    Article  CAS  Google Scholar 

  112. Leukers B, Gülkan H, Irsen SH, Milz S, Tille C, Schieker M, Seitz H (2005) Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing J Mater Sci Mater Med 16:1121–1124

    Article  CAS  Google Scholar 

  113. Seitz H, Rieder W, Irsen S, Leukers B, Tille C (2005) Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering J Biomed Mater Res Part B Appl Biomater 74:782–788

    Article  CAS  Google Scholar 

  114. Chumnanklang R, Panyathanmaporn T, Sitthiseripratip K, Suwanprateeb J (2007) 3D printing of hydroxyapatite: effect of binder concentration in pre-coated particle on part strength Mater Sci Eng C 27:914–921

    Article  CAS  Google Scholar 

  115. Cui X, Breitenkamp K, Finn MG, Lotz M, D'Lima DD (2012) Direct human cartilage repair using three-dimensional bioprinting technology Tissue Eng Part A 8:1304–1312

    Article  CAS  Google Scholar 

  116. Kolesky DB, Truby RL, Gladman A, Busbee TA, Homan KA, Lewis JA (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs Adv Mater 26:3124–3130

    Article  CAS  Google Scholar 

  117. Xu T, Zhao W, Zhu JM, Albanna MZ, Yoo JJ, Atala A (2013) Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology Biomaterials 34:130–139

    Article  CAS  Google Scholar 

  118. Faulkner-Jones A, Fyfe C, Cornelissen DJ, Gardner J, King J, Courtney A, Shu W (2015) Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D Biofabrication 7:044102

    Article  Google Scholar 

  119. Wu Z, Su X, Xu Y, Kong B, Sun W, Mi S (2016) Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation Sci Rep 6. doi:10.1038/srep24474

  120. Richards D, Jia J, Yost M, Markwald R, & Mei Y, (2016) 3D bioprinting for vascularized tissue fabrication. Ann biomed Eng: 1-16

  121. Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA (2016) Three-dimensional bioprinting of thick vascularized tissues Proc Natl Acad Sci 113(12):3179–3184

    Article  CAS  Google Scholar 

  122. Wang J, Yang M, Zhu Y, Wang L, Tomsia AP, Mao C (2014) Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds Adv Mater 26(29):4961–4966

    Article  CAS  Google Scholar 

  123. Ye K, Felimban R, Traianedes K, Moulton SE, Wallace GG, Chung J, Myers DE (2014) Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold PLoS One 9:e99410

    Article  CAS  Google Scholar 

  124. Bhandari M, Schemitsch EH, Adili A, Lachowski RJ, Shaughnessy SG (1999) High and low pressure pulsatile lavage of contaminated tibial fractures: an in vitro study of bacterial adherence and bone damage J Orthop Trauma 13:526–533

    Article  CAS  Google Scholar 

  125. Gustilo RB, Anderson JT (1976) Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones: retrospective and prospective analyses J Bone Joint Surg Am 58:453–458

    Article  CAS  Google Scholar 

  126. Yang Y, Yang S, Wang Y, Yu Z, Ao H, Zhang H, Tang T (2016) Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan Acta Biomater 46:112–128

    Article  CAS  Google Scholar 

  127. Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (2003) Organ printing: computer-aided jet-based 3D tissue engineering Trends Biotechnol 21:157–161

    Article  CAS  Google Scholar 

  128. Schubert C, Van Langeveld MC, Donoso LA (2013) Innovations in 3D printing: a 3D overview from optics to organs Br J Ophthalmol. doi:10.1136/bjophthalmol-2013-304446

  129. Mironov V, Kasyanov V, Drake C, Markwald RR (2008) Organ printing: promises and challenges Regen Med 3:93–103

    Article  CAS  Google Scholar 

  130. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique Biotechnol Adv 28:325–347

    Article  CAS  Google Scholar 

  131. Sill TJ, Von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering Biomaterials 29:1989–2006

    Article  CAS  Google Scholar 

  132. Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications Polymer 49:5603–5621

    Article  CAS  Google Scholar 

  133. Kenawy ER, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH, Wnek GE (2002) Release of tetracycline hydrochloride from electrospun poly (ethylene-co-vinylacetate), poly (lactic acid), and a blend J Control Release 81:57–64

    Article  CAS  Google Scholar 

  134. Yu DG, Shen XX, Branford-White C, White K, Zhu LM, Bligh SA (2009) Oral fast-dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers Nanotechnology 20:055104

    Article  CAS  Google Scholar 

  135. Meinel AJ, Germershaus O, Luhmann T, Merkle HP, Meinel L (2012) Electrospun matrices for localized drug delivery: current technologies and selected biomedical applications Eur J Pharm Biopharm 81:1–13

    Article  CAS  Google Scholar 

  136. Kim HW, Lee HH, Knowles JC (2006) Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly (lactic acid) for bone regeneration J Biomed Mater Res A 79:643–649

    Article  CAS  Google Scholar 

  137. Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S (2008) Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration Artif Organs 32:388–397

    Article  CAS  Google Scholar 

  138. Wang HB, Mullins ME, Cregg JM, Hurtado A, Oudega M, Trombley MT, Gilbert RJ (2008) Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications J Neural Eng 6:016001

    Article  Google Scholar 

  139. Chew SY, Mi R, Hoke A, Leong KW (2007) Aligned protein–polymer composite fibers enhance nerve regeneration: a potential tissue-engineering platform Adv Funct Mater 17:1288–1296

    Article  CAS  Google Scholar 

  140. Kumbar SG, Nukavarapu SP, James R, Nair LS, Laurencin CT (2008) Electrospun poly (lactic acid-co-glycolic acid) scaffolds for skin tissue engineering Biomaterials 29:4100–4107

    Article  CAS  Google Scholar 

  141. Jeong L, Yeo IS, Kim HN, Yoon YI, Jang DH, Jung SY, Park WH (2009) Plasma-treated silk fibroin nanofibers for skin regeneration Int J Biol Macromolec 44:222–228

    Article  CAS  Google Scholar 

  142. Rho KS, Jeong L, Lee G, Seo BM, Park YJ, Hong SD, Min BM (2006) Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing Biomaterials 27:1452–1461

    Article  CAS  Google Scholar 

  143. Chong EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, Lim CT (2007) Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution Acta Biomater 3:321–330

    Article  CAS  Google Scholar 

  144. Schneider A, Wang XY, Kaplan DL, Garlick JA, Egles C (2009) Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing Acta Biomater 5:2570–2578

    Article  CAS  Google Scholar 

  145. Bhavsar C, Momin M, Gharat S, Omri A (2016) Functionalized and graft copolymers of chitosan and its pharmaceutical applications. Expert Opin drug Deliv: 1-16

  146. Veleirinho B, Coelho DS, Dias PF, Maraschin M, Ribeiro-do-Valle RM, Lopes-da-Silva JA (2012) Nanofibrous poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/chitosan scaffolds for skin regeneration Int J Biol Macromolec 51:343–350

    Article  CAS  Google Scholar 

  147. Veleirinho B, Ribeiro-do-Valle RM, Lopes-da-Silva JA (2011) Processing conditions and characterization of novel electrospun poly (3-hydroxybutyrate-co-hydroxyvalerate)/chitosan blend fibers Mater Lett 65:2216–2219

    Article  CAS  Google Scholar 

  148. Zhou Y, Yang D, Chen X, Xu Q, Lu F, Nie J (2007) Electrospun water-soluble carboxyethyl chitosan/poly (vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration Biomacromolecules 9:349–354

    Article  CAS  Google Scholar 

  149. Chen JP, Chang GY, Chen JK (2008) Electrospun collagen/chitosan nanofibrous membrane as wound dressing Colloids Surf A Physicochem Eng Asp 313:183–188

    Article  CAS  Google Scholar 

  150. Shalumon KT, Binulal NS, Selvamurugan N, Nair SV, Menon D, Furuike T, Jayakumar R (2009) Electrospinning of carboxymethyl chitin/poly (vinyl alcohol) nanofibrous scaffolds for tissue engineering applications Carbohydr Polym 77:863–869

    Article  CAS  Google Scholar 

  151. Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT (2008) Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering Biomaterials 29:4314–4322

    Article  CAS  Google Scholar 

  152. Park YJ, Kim KH, Lee JY, Ku Y, Lee SJ, Min BM, Chung CP (2006) Immobilization of bone morphogenetic protein-2 on a nanofibrous chitosan membrane for enhanced guided bone regeneration Biotechnol Appl Biochem 43:17–24

    Article  CAS  Google Scholar 

  153. Shin M, Yoshimoto H, Vacanti JP (2004) In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold J Tissue Eng 10:33–41

    Article  CAS  Google Scholar 

  154. Frohbergh ME, Katsman A, Botta GP, Lazarovici P, Schauer CL, Wegst UG, Lelkes PI (2012) Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering Biomaterials 33:9167–9178

    Article  CAS  Google Scholar 

  155. Lu T, Li Y, Chen T (2013) Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering Int J Nanomedicine 8:337

    Article  CAS  Google Scholar 

  156. He JX, Tan WL, Han QM, Cui SZ, Shao W, Sang F (2016) Fabrication of silk fibroin/cellulose whiskers–chitosan composite porous scaffolds by layer-by-layer assembly for application in bone tissue engineering J Mater Sci 51:4399–4410

    Article  CAS  Google Scholar 

  157. Chen CY, Wang JW, Hon MH (2006) Polyion complex Nanofibrous structure formed by self-assembly of chitosan and poly (acrylic acid) Macromol Mater Eng 291:123–127

    Article  CAS  Google Scholar 

  158. GerVaSO F, Sannino A, Peretti GM (2013) The biomaterialist’s task: scaffold biomaterials and fabrication technologies Joints 1:130

    Google Scholar 

  159. Greco A, Maffezzoli A (2007) Polymer melting and polymer powder sintering by thermal analysis J Therm Anal Calorim 72:1167–1174

    Article  Google Scholar 

  160. Varde NK, Pack DW (2003) Microspheres for controlled release drug delivery Expert Opin Biol Ther 4:35–51

    Article  Google Scholar 

  161. Borden M, Attawia M, Khan Y, El-Amin SF, Laurencin CT (2004) Tissue-engineered bone formation in vivo using a novel sintered polymeric microsphere matrix Bone Joint J 86:1200–1208

    Article  CAS  Google Scholar 

  162. Brown JL, Nair LS, Laurencin CT (2008) Solvent/non-solvent sintering: a novel route to create porous microsphere scaffolds for tissue regeneration J Biomed Mater Res B Appl Biomater 86:396–406

    Article  CAS  Google Scholar 

  163. Nukavarapu SP, Kumbar SG, Brown JL, Krogman NR, Weikel AL, Hindenlang MD, Nair LS, Allcock HR, Laurencin CT (2008) Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissue engineering Biomacromolecules 9:1818

    Article  CAS  Google Scholar 

  164. Tan KH, Chua CK, Leong KF, Cheah CM, Cheang P, Bakar MA, Cha SW (2003) Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends Biomaterials 24:3115–3123

    Article  CAS  Google Scholar 

  165. Bao M, Zhou Q, Dong W, Lou X, Zhang Y. Ultrasound-modulated shape memory and payload release effects in a biodegradable cylindrical rod made of chitosan-functionalized PLGA microspheres. Biomacromolecules. 14(6):1971–9

  166. Singh M, Sandhu B, Scurto A, Berkland C, Detamore MS (2010) Microsphere-based scaffolds for cartilage tissue engineering: using subcritical CO2 as a sintering agent Acta Biomater 6:137–143

    Article  CAS  Google Scholar 

  167. Shi X, Wang Y, Ren L, Lai C, Gong Y, Wang DA (2010) A novel hydrophilic poly (lactide-co-glycolide)/lecithin hybrid microspheres sintered scaffold for bone repair J Biomed Mater Res A 92:963–972

    Google Scholar 

  168. Jiang T, Abdel-Fattah W I, Laurencin C T (2006) In vitro evaluation of chitosan/poly (lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering biomaterials. 27:4894-903

  169. Zugravu MV, Smith RA, Reves BT, Jennings JA, Cooper JO, Haggard WO, Bumgardner JD (2013) Physical properties and in vitro evaluation of collagen–chitosan–calcium phosphate microparticle-based scaffolds for bone tissue regeneration J Biomater Appl 28:566–579

    Article  CAS  Google Scholar 

  170. Levengood SK, Zhang M (2014) Chitosan-based scaffolds for bone tissue engineering J Mater Chem B 2:3161–3184

    Article  CAS  Google Scholar 

  171. Gervaso F, Scalera F, Kunjalukkal Padmanabhan S, Sannino A, Licciulli A (2012) High-performance hydroxyapatite scaffolds for bone tissue engineering applications Int J Appl Ceram Tec 9:507–516

    Article  CAS  Google Scholar 

  172. Sopyan I, Kaur J (2009) Preparation and characterization of porous hydroxyapatite through polymeric sponge method Ceram Int 35:3161–3168

    Article  CAS  Google Scholar 

  173. Tampieri A, Celotti G, Sprio S, Delcogliano A, Franzese S (2001) Porosity-graded hydroxyapatite ceramics to replace natural bone Biomaterials 22:1365–1370

    Article  CAS  Google Scholar 

  174. Jamaludin AR, Kasim SR, Ismail AK, Abdullah MZ, Ahmad ZA (2015) The effect of sago as binder in the fabrication of alumina foam through the polymeric sponge replication technique J Eur Ceram 35:1905–1914

    Article  CAS  Google Scholar 

  175. Ocampo JIG, Sierra DME, Orozco CPO (2016) Porous bodies of hydroxyapatite produced by a combination of the gel-casting and polymer sponge methods J Adv Res 7:297–304

    Article  CAS  Google Scholar 

  176. Sachlos E, Czernuszka JT (2003) Making tissue engineering scaffolds work Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds Eur Cell Mater 5:39–40

    Google Scholar 

  177. Yeong WY, Chua CK, Leong KF, Chandrasekaran M (2004) Rapid prototyping in tissue engineering: challenges and potential Trends Biotechnol 22:643–652

    Article  CAS  Google Scholar 

  178. Leong KF, Chua CK, Sudarmadji N, Yeong WY (2008) Engineering functionally graded tissue engineering scaffolds J Mech Behav Biomed 1:140–152

    Article  CAS  Google Scholar 

  179. Lee EH, Uyama H, Kwon OH, Sung MH (2009) Fabrication of ultrafine fibers of poly (γ-glutamic acid) and its derivative by electrospinning Polym Bull 63:735

    Article  CAS  Google Scholar 

  180. Papenburg BJ, Schüller-Ravoo S, Bolhuis-Versteeg LA, Hartsuike L, Grijpma DW, Feijen J, Stamatialis D (2009) Designing porosity and topography of poly (1, 3-trimethylene carbonate) scaffolds Acta Biomater 5(9):3281–3294

    Article  CAS  Google Scholar 

  181. Pezeshki-M M, Rajabi ZS, Zandi M, Mirzadeh H, Sodeifi N, Nekookar A, Aghdami N (2014) Cell-loaded gelatin/chitosan scaffolds fabricated by salt-leaching/lyophilization for skin tissue engineering: in vitro and in vivo study J Biomed Mater Res A 102:3908–3917

    Article  CAS  Google Scholar 

  182. Oliveira JM, Silva SS, Mano JF, Reis R (2006) Innovative technique for the preparation of porous bilayer hydroxyapatite/chitosan scaffolds for osteochondral applications In Key Eng Mater 309:927–930

    Article  Google Scholar 

  183. Jiankang H, Dichen L, Yaxiong L, Bo Y, Hanxiang Z, Qin L, Yi L (2009) Preparation of chitosan–gelatin hybrid scaffolds with well-organized microstructures for hepatic tissue engineering Acta Biomater 5:453–461

    Article  CAS  Google Scholar 

  184. Hu Q, Li B, Wang M, Shen J (2004) Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture Biomaterials 25:779–785

    Article  CAS  Google Scholar 

  185. Wang X, Li Q, Hu X, Ma L, You C, Zheng Y, Gao C (2012) Fabrication and characterization of poly (l-lactide-co-glycolide) knitted mesh-reinforced collagen–chitosan hybrid scaffolds for dermal tissue engineering J Mech Behav Biomed Mater 8:204–215

    Article  CAS  Google Scholar 

  186. Qi B, Yu A, Zhu S, Chen B, Li Y (2010) The preparation and cytocompatibility of injectable thermosensitive chitosan/poly (vinyl alcohol) hydrogel J Huazhong Univ Sci Technolog Med Sci 30:89–93

    Article  CAS  Google Scholar 

  187. Liu J, Wang W, Wang A (2011) Synthesis, characterization, and swelling behaviours of chitosan-g-poly (acrylic acid)/poly (vinyl alcohol) semi-IPN superabsorbent hydrogels Polymer Adv Tech 22:627–634

    Article  CAS  Google Scholar 

  188. Azizi S, Ahmad MB, Hussein MZ, Ibrahim NA, Namvar F (2014) Preparation and properties of poly (vinyl alcohol)/chitosan blend bionanocomposites reinforced with cellulose nanocrystals/ZnO-Ag multifunctional nanosized filler Int J Nanomedicine 9:1909

    Article  Google Scholar 

  189. Khairkar SR, Raut AR (2014) Chitosan-graft-poly (acrylicacid-co-acrylamide) superabsorbent hydrogel J Chitin Chitosan Sci 2:288–292

    Article  Google Scholar 

  190. Kim CH, Khil MS, Kim HY, Lee HU, Jahng KY (2006) An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation J Biomed Mater Res Part B Appl Biomater 78:283–290

    Article  CAS  Google Scholar 

  191. Zhang ZH, Han Z, Zeng XA, Xiong XY, Liu YJ (2015) Enhancing mechanical properties of chitosan films via modification with vanillin Int J Biol Macromolec 81:638–643

    Article  CAS  Google Scholar 

  192. Ashori A, Bahrami R (2014) Modification of physico-mechanical properties of chitosan-tapioca starch blend films using nano graphene Polym Plast Technol Eng 53:312–318

    Article  CAS  Google Scholar 

  193. Sionkowska A, Płanecka A (2013) Preparation and characterization of silk fibroin/chitosan composite sponges for tissue J Mol Liq 178:5–14

    Article  CAS  Google Scholar 

  194. Shevchenko RV, James SL, James SE (2010) A review of tissue-engineered skin bioconstructs available for skin reconstruction J R Soc Interface 7:229–258

    Article  CAS  Google Scholar 

  195. Leung JJ, Dr. Fish J (2009) Skin Grafts. Univ Tor Med J 86: 61–64

  196. Mohd Hilmi AB, Halim AS, Jaafar H, Asiah AB, Hassan A (2013) Chitosan dermal substitute and chitosan skin substitute contribute to accelerated full-thickness wound healing in irradiated rats Bio Med Res Int. doi:10.1155/2013/795458

  197. Ma J, Wang H, He B, Chen J (2001) A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts Biomaterials 22:331–336

    Article  CAS  Google Scholar 

  198. Han F, Dong Y, Su Z, Yin R, Song A, Li S (2014) Preparation, characteristics and assessment of a novel gelatin–chitosan sponge scaffold as skin tissue engineering material Int J Pharm 476:124–133

    Article  CAS  Google Scholar 

  199. Di Martino A, Sittinger M, Risbud MV (2005) Chitosan: a versatile biopolymer for orthopaedic tissue-engineering Biomaterials 26:5983–5990

    Article  CAS  Google Scholar 

  200. Isikli C, Hasirci V, Hasirci N (2012) Development of porous chitosan–gelatin/hydroxyapatite composite scaffolds for hard tissue-engineering applications J Tissue Eng Regen Med 6:135–143

    Article  CAS  Google Scholar 

  201. Yan LP, Wang YJ, Ren L, Wu G, Caridade SG, Fan JB, Mano JF (2010) Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications J Biomed Mater Res A 95:465–475

    Article  CAS  Google Scholar 

  202. Bhardwaj N, Kundu SC (2011) Silk fibroin protein and chitosan polyelectrolyte complex porous scaffolds for tissue engineering applications Carbohydr Polym 85:325–333

    Article  CAS  Google Scholar 

  203. Kanimozhi K, Basha SK (2016) Kumari VS Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering Mater Sci Eng C 61:484–491

    CAS  Google Scholar 

  204. Gentile P, Nandagiri VK, Daly J, Chiono V, Mattu C, Tonda-Turo C, Ramtoola Z (2016) Localised controlled release of simvastatin from porous chitosan–gelatin scaffolds engrafted with simvastatin loaded PLGA-microparticles for bone tissue engineering application Mater Sci Eng C 59:249–257

    Article  CAS  Google Scholar 

  205. Stone CA, Wright H, Devaraj VS, Clarke T, Powell R (2000) Healing at skin graft donor sites dressed with chitosan Brit J Plast Surg 53:601–606

    Article  CAS  Google Scholar 

  206. Kiyozumi T, Kanatani Y, Ishihara M, Saitoh D, Shimizu J, Yura H, Kikuchi M (2006) Medium (DMEM/F12)-containing chitosan hydrogel as adhesive and dressing in autologous skin grafts and accelerator in the healing process J Biomed Mater Res Part B Appl Biomater 79:129–136

    Article  CAS  Google Scholar 

  207. Huang C, Chen R, Ke Q, Morsi Y, Zhang K, Mo X (2011) Electrospun collagen–chitosan–TPU nanofibrous scaffolds for tissue engineered tubular grafts Colloids Surf B Biointerfaces 82:307–315

    Article  CAS  Google Scholar 

  208. Wu Y, Sriram G, Fawzy AS, Fuh JY, Rosa V, Cao T, Wong YS (2016) Fabrication and evaluation of electrohydrodynamic jet 3D printed polycaprolactone/chitosan cell carriers using human embryonic stem cell-derived fibroblasts J Biomater Appl 31:181–192

    Article  CAS  Google Scholar 

  209. Vishwanath V, Pramanik K, Biswas A (2016) Optimization and evaluation of silk fibroin-chitosan freeze-dried porous scaffolds for cartilage tissue engineering application J Biomater Sci Polym Ed. 27:657–674

    Article  CAS  Google Scholar 

  210. Surucu S, Sasmazel HT (2016) Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds Int J Biol Macromol 92:321–328

    Article  CAS  Google Scholar 

  211. Shrestha BK, Mousa HM, Tiwari AP, Ko SW, Park CH, Kim CS (2016) Development of polyamide-6, 6/chitosan electrospun hybrid nanofibrous scaffolds for tissue engineering application Carbohydr Polym 148:107–114

    Article  CAS  Google Scholar 

  212. Li X, Yuan Z, Wei X, Li H, Zhao G, Miao J, Ma W (2016) Application potential of bone marrow mesenchymal stem cell (BMSCs) based tissue-engineering for spinal cord defect repair in rat fetuses with spina bifida aperta J Mater Sci Mater Med 27:1–11

    Google Scholar 

  213. Gu Y, Li Z, Huang J, Wang H, Gu X, Gu J (2016) Application of marrow mesenchymal stem cell-derived extracellular matrix in peripheral nerve tissue engineering J Tissue Eng Regen Med. doi:10.1002/term.2123

  214. Mahoney C, Conklin D, Waterman J, Sankar J, Bhattarai N (2016) Electrospun nanofibers of poly (ε-caprolactone)/depolymerized chitosan for respiratory tissue engineering applications J Biomater Sci Polym Ed 27:611–625

    Article  CAS  Google Scholar 

  215. Nawrotek K, Tylman M, Rudnicka K, Gatkowska J, Balcerzak J (2016) Tubular electrodeposition of chitosan–carbon nanotube implants enriched with calcium ions J Mech Behav Biomed Mater 60:256–266

    Article  CAS  Google Scholar 

  216. Tong S, Xu DP, Liu ZM, Du Y, Wang XK (2016) Synthesis of and in vitro and in vivo evaluation of a novel TGF-β1-SF-CS three-dimensional scaffold for bone tissue engineering Int J Mol Med 38:367–380

    Article  CAS  Google Scholar 

  217. Kong Y, Xu R, Darabi MA, Zhong W, Luo G, Xing MM, Wu J (2016) Fast and safe fabrication of a free-standing chitosan/alginate nanomembrane to promote stem cell delivery and wound healing Int J Nanomedicine 11:2543

    CAS  Google Scholar 

  218. Kucharska M, Walenko K, Lewandowska-Szumieł M, Brynk T, Jaroszewicz J, Ciach T (2015) Chitosan and composite microsphere-based scaffold for bone tissue engineering: evaluation of tricalcium phosphate content influence on physical and biological properties J Mater Sci Mater Med 26:1–12

    Article  CAS  Google Scholar 

  219. Zhou G, Yu X, Tai J, Han F, Yan M, Xi Y, Fan Y (2016) Research on a novel chitosan microsphere/scaffold system by double crosslinkers Dent Mater J 35:862–868

    Article  Google Scholar 

  220. Ding K, Yang Z, Xu JZ, Liu WY, Zeng Q, Hou F, Lin S (2015) Elastic hydrogel substrate supports robust expansion of murine myoblasts and enhances their engraftment Exp Cell Res 337(1):111–119

    Article  CAS  Google Scholar 

  221. Zhao X, Li P, Guo B, Ma PX (2015) Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering Acta Biomater 26:236–248

    Article  CAS  Google Scholar 

  222. Deepthi S, Jeevitha K, Sundaram MN, Chennazhi KP, Jayakumar R (2015) Chitosan–hyaluronic acid hydrogel coated poly (caprolactone) multiscale bilayer scaffold for ligament regeneration Chem Eng J 260:478–485

    Article  CAS  Google Scholar 

  223. Mohamed MA, Hogan MK, Patel NM, Tao ZW, Gutierrez L, Birla RK (2015) Establishing the framework for tissue engineered heart pumps Cardiovasc Eng Technol 6:220–229

    Article  Google Scholar 

  224. Zhou Y, Gao HL, Shen LL, Pan Z, Mao LB, Wu T, Yu SH (2016) Chitosan microspheres with an extracellular matrix-mimicking nanofibrous structure as cell-carrier building blocks for bottom-up cartilage tissue engineering Nano 8:309–317

    CAS  Google Scholar 

  225. Azizi A, Azizi S, Heshmatian B, Amini K (2014) Improvement of functional recovery of transected peripheral nerve by means of chitosan grafts filled with vitamin E, pyrroloquinoline quinone and their combination Int J Surg 12:76–82

    Article  Google Scholar 

  226. Huang F, Cui L, Peng CH, Wu XB, Han BS, Dong YD (2014) Preparation of three-dimensional macroporous chitosan–gelatin B microspheres and HepG2-cell culture J Tissue Eng Regen Med 10:1033–1040

    Article  CAS  Google Scholar 

  227. Yao Y, Wang J, Cui Y, Xu R, Wang Z, Zhang J, Kong D (2014) Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialization Acta Biomater 10:2739–2749

    Article  CAS  Google Scholar 

  228. Jiang K, Wang Z, Du Q, Yu J, Wang A, Xiong Y (2014) A new TGF-β3 controlled-released chitosan scaffold for tissue engineering synovial sheath J Biomed Mater Res A 102:801–807

    Article  CAS  Google Scholar 

  229. Sarkar SD, Farrugia BL, Dargaville TR, Dhara S (2013) Chitosan–collagen scaffolds with nano/microfibrous architecture for skin tissue engineering J Biomed Mater Res A 101:3482–3492

    Article  CAS  Google Scholar 

  230. Mei L, Hu D, Ma J, Wang X, Yang Y, Liu J (2012) Preparation, characterization and evaluation of chitosan macroporous for potential application in skin tissue engineering Int J Biol Macromolec 51:992–997

    Article  CAS  Google Scholar 

  231. Chen H, Huang J, Yu J, Liu S, Gu P (2011) Electrospun chitosan-graft-poly (ɛ-caprolactone)/poly (ɛ-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering Int J Biol Macromolec 48:13–19

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munira Momin.

Ethics declarations

Conflicts of interest

Authors express no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, A.R., Singh, U.S., Momin, M. et al. Chitosan: Application in tissue engineering and skin grafting. J Polym Res 24, 125 (2017). https://doi.org/10.1007/s10965-017-1286-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1286-4

Keywords

Navigation