Skip to main content
Log in

Synthesis and thermal properties of natural rubber grafted with poly(2-hydroxyethyl acrylate)

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A novel modified natural rubber with grafted poly(2-hydroxyethyl acrylate) (NR-g-PHEA) was synthesized by emulsion polymerization in latex stage. Cumene hydroperoxide and tetraethylene pentamine were used as redox initiators (1:1 M ratio). The influences of reaction temperature, reaction time, initiator concentration and monomer concentration on percent grafting and grafting efficiency were investigated. Transmission electron microscopy was used to observe the NR-g-PHEA particles, which exhibited core-shell morphology. Chemical structure of purified NR-g-PHEA was confirmed by Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy. The thermal properties were examined by thermogravimetric analysis and by differential scanning calorimetry. The modified NR had improved thermal stability, and the NR-g-PHEA also presented slightly higher glass transition temperature than virgin NR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Okwu UN, Okieimen FE (2001) Preparation and properties of thioglycollic acid modified epoxidised natural rubber and its blends with natural rubber Eur Polym J 37:2253–2258

    Article  CAS  Google Scholar 

  2. Derouet D, Tran QN, Thuc HH (2007) Synthesis of N,N-diethyldithiocarbamate functionalized 1,4-polyisoprene, from natural rubber and synthetic 1,4-polyisoprene Eur Polym J 43:1806–1824

    Article  CAS  Google Scholar 

  3. Derouet D, Intharapat P, Tran QN, Gohier F, Nakason C (2009) Graft copolymers of natural rubber and poly(dimethyl(acryloyloxymethyl) phosphonate) (NR-g-PDMAMP) or poly(dimethyl(methacryloyloxyethyl) phosphonate) (NR-g-PDMMEP) from photopolymerization in latex medium Eur Polym J 45:820–836

    Article  CAS  Google Scholar 

  4. Kongparakul S, Prasassarakich P, Rempel GL (2009) Catalytic hydrogenation of styrene-g-natural rubber (ST-g-NR) in the presence of OsHCl(CO)(O2)(PCy3)2 Eur Polym J 45:2358–2373

    Article  CAS  Google Scholar 

  5. Wongthong P, Nakason C, Pan Q, Rempel GL, Kiatkamjornwong S (2013) Modification of deproteinized natural rubber via grafting polymerization with maleic anhydride Eur Polym J 49:4035–4046

    Article  CAS  Google Scholar 

  6. Saramolee P, Lopattananon N, Sahakaro K (2014) Preparation and some properties of modified natural rubber bearing grafted poly(methyl methacrylate) and epoxide groups Eur Polym J 56:1–10

    Article  CAS  Google Scholar 

  7. Kochthongrasamee T, Prasassarakich P, Kiatkamjornwong S (2006) Effects of redox initiator on graft copolymerization of methyl methacrylate onto natural rubber J Appl Polym Sci 110:2587–2601

    Article  Google Scholar 

  8. Songsing K, Vatanatham T, Hansupalak N (2013) Kinetics and mechanism of grafting styrene onto natural rubber in emulsion polymerization using cumene hydroperoxide– tetraethylenepentamine as redox initiator Eur Polym J 49:1007–1016

    Article  CAS  Google Scholar 

  9. Jaratrotkamjorn R, Khaokong C, Tanrattanakul V (2012) Toughness enhancement of poly(lactic acid) by melt blending with natural rubber J Appl Polym Sci 124:5027–5036

    CAS  Google Scholar 

  10. Suksawad P, Yamamoto Y, Kawahara S (2011) Preparation of thermoplastic elastomer from natural rubber grafted with polystyrene Eur Polym J 47:330–337

    Article  CAS  Google Scholar 

  11. Jaimuang S, Vatanatham T, Limtrakul S, Prapainainar P (2015) Kinetic studies of styrene-grafted natural rubber emulsion copolymerization using transmission electron microscope and thermal gravimetric analysis Polymer 67:249–257

    Article  CAS  Google Scholar 

  12. Khamplod T, Loykulnant S, Kongkaew C, Sureeyatanapas P, Prapainainar P (2015) Electron beam radiation grafting of styrene on natural rubber using Taguchi's design Polymer 79:135–145

    Article  CAS  Google Scholar 

  13. Mohapatra S, Alex R, Nando GB (2016) Cardanol grafted natural rubber: a green substitute to natural rubber for enhancing silica filler dispersion J Appl Polym Sci. doi:10.1002/APP.43057

  14. Thongnuanchan B, Ninjan R, Kaesaman A, Nakason C (2015) Studies on the ambient temperature crosslinking of latex films based on natural rubber grafted with poly(diacetone acrylamide) using DMTA J Polym Res 22(115):1–11

    CAS  Google Scholar 

  15. Kangwansupamonkon W, Gilbert RG, Kiatkamjornwong S (2005) Modification of natural rubber by grafting with hydrophilic vinyl monomers Macromol Chem Phys 6:2450–2460

    Article  Google Scholar 

  16. Yamamoto Y, Suksawad P, Pukkate N, Horimai T, Wakisaka O, Kawahara S (2010) Photoreactive Nanomatrix structure formed by graft-copolymerization of 1,9-Nonandiol Dimethacrylate onto natural rubber J Polym Sci A Polym Chem 48:2418–2424

    Article  CAS  Google Scholar 

  17. Juntuek P, Ruksakulpiwat C, Chumsamrong P, Ruksakulpiwat Y (2011) Glycidyl methacrylate grafted natural rubber: synthesis, characterization, and mechanical property J Appl Polym Sci 122:3152–3159

    Article  CAS  Google Scholar 

  18. Zhang C, Man C, Pan Y, Wang W, Jiang L, Dan Y (2011) Toughening of polylactide with natural rubber grafted with poly(butyl acrylate) Polym Int 60:1548–1555

    Article  CAS  Google Scholar 

  19. Hinchiranan N, Wannako P, Paosawatyanyong B, Prasassarakich P (2013) 2,2,2-Trifluoroethyl methacrylate-graft-natural rubber: synthesis and application as compatibilizer in natural rubber/fluoroelastomer blends Mater Chem Phys 139:689–698

    Article  CAS  Google Scholar 

  20. Amnuaypanich S, Ratpolsan P (2009) Pervaporation membranes from natural rubber latex grafted with poly(2-hydroxyethyl methacrylate) (NR-g-PHEMA) for the separation of water–acetone mixtures J Appl Polym Sci 113:3313–3321

    Article  CAS  Google Scholar 

  21. Wei F, Yu H, Zeng Z, Liu H, Wang Q, Wang J, Li S (2014) Preparation and structural characterization of hydroxylethyl methacrylate grafted natural rubber latex Polímerous 24(3):283–290

    Article  CAS  Google Scholar 

  22. Yusof NH, Kosugi K, Song TK, Kawahara S (2016) Preparation and characterization of poly(stearyl methacrylate) grafted natural rubber in latex stage Polymer 88:43–51

    Article  CAS  Google Scholar 

  23. Chumeka W, Tanrattanakul V, Pilard JF, Pasetto P (2013) Effect of poly(vinyl acetate) on mechanical properties and characteristics of poly(lactic acid)/natural rubber blends J Polym Environ 21(2):450–460

    Article  CAS  Google Scholar 

  24. Mejia M, Murillo E (2016) Study of the structural, thermal, rheological and film properties of functional copolymers of hydroxyethyl acrylate and methyl methacrylate Polímerous. doi:10.1590/0104-1428.1896

  25. Oliveira PC, Oliveira AM, Garcia A, Barboza JCS, Zavaglia CAC, Santos AM (2005) Modification of natural rubber: a study by 1H NMR to assess the degree of graftization of polyDMAEMA or polyMMA onto rubber particles under latex form in the presence of a redox couple initiator Eur Polym J 41:1883–1892

    Article  Google Scholar 

  26. Riyajan SA, Sukhlaaied W (2013) Effect of chitosan content on gel content of epoxized natural rubber grafted with chitosan in latex form Mater Sci Eng C Mater Biol Appl 33(3):1041–1047

    Article  CAS  Google Scholar 

  27. Luo Y, Schork J (2001) Emulsion copolymerization of butyl acrylate with cationic monomer using interfacial redox initiator system J Polym Sci A Polym Chem 39:2696–2709

    Article  CAS  Google Scholar 

  28. Sirirat T, Vatanatham T, Hansupalak N, Rempel GL, Arayapranee W (2015) Kinetic study of styrene and methyl methacrylate emulsion polymerization induced by cumene hydroperoxide/tetraethylenepentamine. J Polym Res 22:16(1–11)

  29. Vargun E (2003) Polymerization and characterization of 2-hydroxyethyl acrylate. The Middle East Technical University. 64–67

Download references

Acknowledgements

This research was financially supported by a grant from Prince of Songkla University, contract no. SIT570411S, by the government budget of Prince of Songkla University, contract no. SIT590171c, and by Prince of Songkla University, Surat Thani Campus, 2015. The authors would like to express their gratitude to the Faculty of Science and Industrial Technology, Prince of Songkla University, Surat Thani Campus, and to the Research and Development Office (RDO). We are grateful to Assoc. Prof. Dr. Seppo Karrila for his assistance with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wannarat Chueangchayaphan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chueangchayaphan, W., Tanrattanakul, V., Chueangchayaphan, N. et al. Synthesis and thermal properties of natural rubber grafted with poly(2-hydroxyethyl acrylate). J Polym Res 24, 107 (2017). https://doi.org/10.1007/s10965-017-1269-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1269-5

Keywords

Navigation