Skip to main content
Log in

Modification of the reactive core-shell particles properties to prepare PBT/PC blends with higher toughness and stiffness

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Glycidyl methacrylate (GMA) functionalized methyl methacrylate-butadiene-styrene core-shell particles (PB-g-MSG) were prepared to toughen poly (butylene terephthalate) (PBT) and polycarbonate (PC) blends. T-dodecyl mercaptan (TDDM) was used to modify the grafting character of the core-shell particles. The addition of TDDM decreased the grafting degree, particles size and crosslinking degree of PB-g-MSG particles. At the same time, the free methyl methacrylate-co-styrene-co-glyceryl methacrylate copolymer (f-MSG) increased. The f-MSG reacted with PBT and suppressed the transesterification between PBT and PC. On the other hand, f-MSG promoted the crystallization of PBT by heterogeneous nucleation. When the TDDM content was lower than 0.76%, PB-g-MSG particles dispersed in the matrix uniformly, otherwise, agglomeration took place. The change of TDDM content in the PB-g-MSG particles influenced the toughening ability and tensile properties. When the TDDM content was 0.76%, the PBT/PC/PB-g-MSG blend showed the optimum impact toughness and yield strength, which are 908 J/m and 49.4Mpa. Fracture mechanism results indicated that cavitation induced shear yielding occurred in the PBT/PC/PB-g-MSG blend when no TDDM addition for the core-shell particles. With the addition of TDDM, the interfacial strength decreased between the PB-g-MSG core-shell particles and the matrix. So voids appeared due to debonding, which also could promote the shear yielding process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. He JX, Guo Y, Sun SL, Zhang HX (2015) J Polym Eng 3:247

    Google Scholar 

  2. Jose MRCAS, James T (2006) J Mater Chem 16:237

    Article  Google Scholar 

  3. Kooshki RM, Ghasemi I, Karrabi M, Azizi H (2013) J Vinyl Add Tech 19:203

    Article  CAS  Google Scholar 

  4. Lei CH, Chen DH (2008) J Appl Polym Sci 109:1099

    Article  CAS  Google Scholar 

  5. DePolo WS, Baird DG (2009) Polym Compos 30:188

    Article  CAS  Google Scholar 

  6. Kalkar AK, Siesler HW, Pfeifer F, Wadekar SA (2003) Polymer 44:7251

    Article  CAS  Google Scholar 

  7. Bai HY, Zhang Y, Zhang YX, Zhang XF, Zhou W (2005) Polym Test 24:235

    Article  CAS  Google Scholar 

  8. Bai HY, Zhang Y, Zhang YX, Zhang XF, Zhou W (2006) J Appl Polym Sci 101:54

    Article  CAS  Google Scholar 

  9. Kalhoro MS, Gabrys BJ, Zajac W, King SM, Peiffer (2001) Polymer 42:1679

    Article  CAS  Google Scholar 

  10. Wen TT, Guo Y, Song SX, Sun SL, Zhang HX (2015) J Polym Res 22:222

    Article  Google Scholar 

  11. Guo Y, He JX, Zhang XN, Sun SL, Zhang HX (2015) J Macromol Sci B 54:823835

    Article  Google Scholar 

  12. Guo Y, Sun SL, Zhang HX (2014) RSC Adv 4:58880

    Article  CAS  Google Scholar 

  13. Lin GP, Lin L, Wang XL, Chen L, Wang YZ (2015) Ind Eng Chem Res 54:1282

    Article  CAS  Google Scholar 

  14. Sun SL, Zhang FF, Fu Y, Zhou C, Zhang HX (2013) J Macromol Sci B 2:861

    Article  Google Scholar 

  15. Kuram E, Ozcelik B, Yilmaz F, Timur G, Sahin ZM (2014) Polym Compos 35:2074

    Article  CAS  Google Scholar 

  16. Kuram E, Timur G, Ozcelik B, Yilmaz F (2014) Mater Manuf Process 29:1260

    Article  CAS  Google Scholar 

  17. Zhang FF, Sun SL, Liu XY, Zhang LX, Zhang HX (2009) E-polymers 77:1

    Google Scholar 

  18. Wu JS, Wang K, Yu DM (2003) J Mater Sci 38:183

    Article  CAS  Google Scholar 

  19. Wu JS, Mai YW, Yee AF (2000) J Mater Sci 35:307

    Article  CAS  Google Scholar 

  20. Tseng WTW, Lee JS (2000) J Appl Polym Sci 76:1280

    Article  CAS  Google Scholar 

  21. Brady AJ, Keskkula H, Paul DR (1994) Polymer 35:3665

    Article  CAS  Google Scholar 

  22. Okamoto M, Shinoda Y, Kojima T, Inoue T (1994) Polymer 35:4868

    Google Scholar 

  23. Memon AN (1994) J Appl Polym Sci 54:1059

    Article  CAS  Google Scholar 

  24. Gui Y, Sun SL, Han Y (2010) J Appl Polym Sci 115:2386–2393

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51273025, 51272026, and 50803007) and Jilin Provincial Science & Technology Department (20140101104JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shulin Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, B., Lv, H., Song, S. et al. Modification of the reactive core-shell particles properties to prepare PBT/PC blends with higher toughness and stiffness. J Polym Res 24, 85 (2017). https://doi.org/10.1007/s10965-017-1250-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1250-3

Keywords

Navigation