Skip to main content

Advertisement

Log in

St-MMA-BuA terpolymerization in emulsion: II. The kinetic azeotropy and the problem of homogeneity in composition

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

An analysis of the kinetic azeotropy of the terpolymer from styrene(St)-methyl methacrylate(MMA)-butyl acrylate(BuA) in emulsion polymerization is effectuated. The objective is to determine the conditions for obtaining terpolymers uniform in composition. In this regard, a composition near to the unitary azeotrope is used in batch, semicontinuous and seeded emulsion polymerization processes. As expected, the monomer partition between the different phases modifies the terpolymer composition, in particular at the beginning of the semicontinuous processes. It is also observed that the unitary azeotrope in batch and semicontinuous emulsion polymerization is conserved in a large range of conversion due to the constancy of monomer concentration and radicals in the particle. In this way, a terpolymer with almost an accumulated constant composition is obtained in the seeded process. A thermodynamic analysis of the kinetic azeotropy is also made. The correspondence between the azeotropes of the binary copolymers and the values of the Flory interaction parameters of the monomers χ ιj is correlated. It is found that the lesser repulsion of the St-MMA pair respect to that of St-BuA provoked that the composition of the terpolymer tends to the copolymer azeotrope of St-MMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. In the previous work [25] it was reported 434 g, which was a mistake.

References

  1. Napper DH, Gilbert RG (1989) In: Allen G, Bevington JC (eds) Comprehensive polymer science, vol 3. Pergamon Press, Oxford, pp. 171–218

    Chapter  Google Scholar 

  2. Hawkett BS, Napper DH, Gilbert RG (1981) Analysis of interval III kinetic data for emulsion polymerization. J Chem Soc, Faraday Trans I 77:2395–2404

    Article  CAS  Google Scholar 

  3. Smith WV, Ewart RH (1948) Kinetics of emulsion polymerization. J Chem Phys 16:592–599

    Article  CAS  Google Scholar 

  4. Guillot J (1981) Kinetic and thermodynamic aspects of emulsion copolymerization. Acrylonitrile-styrene copolymerization. Acta Polym 32:593–600

    Article  CAS  Google Scholar 

  5. Alb AM, Reed WF (2009) Online monitoring of molecular weight and other characteristics during semibatch emulsion polymerization under monomer starved and flooded conditions. Macromolecules 42:8093–8101

    Article  CAS  Google Scholar 

  6. Ríos L, Guillot J (1978) Azeotropy in terpolymerization. J Macromol Sci, Chem A12:1151–1174

    Article  Google Scholar 

  7. Guillot J (1987) Reactivity ratios and azeotropy in emulsion copolymerization. New J Chem 11:787–791

    CAS  Google Scholar 

  8. Guillot J (1985) Copolymerisation azeotropique en emulsion. Makromol Chem 10(Suppl 11):165–184

    Article  Google Scholar 

  9. Urretabizkaia A, Leiza JR, Asua JM (1994) On-line terpolymer composition control in semicontinuous emulsion polymerization. AICHE J 40:1850–1864

    Article  CAS  Google Scholar 

  10. Srour MH, Gomes VG, Altarawneh IS, Romagnoli JA (2009) Offline model- based control of an emulsion terpolymerisation process. Chem Eng Sci 64:2076–2087

    Article  CAS  Google Scholar 

  11. Mballa MA, Schubert US, Heuts JPA, van Herk AM (2011) Automated batch emulsion copolymerization of styrene and butyl acrylate. J. Polym Sci, Part A: Polym Chem 49:314–326

    Article  Google Scholar 

  12. Gardon JL (1968) Emulsion polymerization. VI. Concentration of monomers in latex particles. J Polym Sci Part A-1: Polym Chem 6:2859–2879

    Article  CAS  Google Scholar 

  13. Nomura M, Fujita K (1985) On the prediction of the rate of emulsion copolymerization and copolymer composition. Makromol Chem 10(Suppl 11):25–42

    Article  Google Scholar 

  14. Saldívar E, Araujo O, Giudici R, López-Barrón C (2001) Modeling and experimental studies of emulsion copolymerization systems. II. Styrenics. J Appl Polym Sci 79:2380–2397 and references therein

    Article  Google Scholar 

  15. Snupárek J, Krska F (1976) Semicontinuous copolymerization of styrene and butyl acrylate. J Appl Polym Sci 20:1753–1764

    Article  Google Scholar 

  16. Guillaume JL, Pichot C, Revillon A (1985) Approaches cinetiques de mecanisme de la copolymerisation styrene-acrylate de butyle. Makromol Chem 10(Suppl 11):69–86

    Article  Google Scholar 

  17. Ginsburger E, Pla F, Fonteix C, Hoppe S, Massebeuf S, Hobbes P, Swaels P (2003) Modelling and simulation of batch and semi-batch emulsion copolymerization of styrene and butyl acrylate. Chem Eng Sci 58:4493–4514

    Article  CAS  Google Scholar 

  18. Benyahia B, Latifí MA, Fonteix C, Pla F, Nacef S (2010) Emulsion copolymerization of styrene in the presence of a chain transfer agent. Part 1: Modelling and experimentation of batch and fedbatch processes. Chem Eng Sci 65:850–869

    Article  CAS  Google Scholar 

  19. Cruz-Rivera A, Ríos-Guerrero L, Monnet C, Schlund B, Guillot J, Pichot C (1989) Structure-property relationships in styrene-butyl acrylate emulsion copolymers: 1. Preparation and characterization of latexes. Polymer 30:1872–1882

    Article  CAS  Google Scholar 

  20. Saldívar E, Araujo O, Giudici R, Guerrero-Sánchez C (2002) Modeling and Experimental Studies of Emulsion Copolymerization Systems. III. Acrylics. J Appl Polym Sci 84:1320–1338 and references therein

    Article  Google Scholar 

  21. Rieger J, Osterwinter G, Bui C, Stoffelbach F, Charleux B (2009) Surfactant-free controlled/living radical emulsion (co) polymerizations of n-butyl acrylate and methyl methacrylate via RAFT, using amphiphilic poly(ethylene oxide)-based trithiocarbonate chain transfer agents. Macromolecules 42:5518–5525

    Article  CAS  Google Scholar 

  22. Khan AK, Ray BC, Maiti J, Dolui SK (2009) Preparation of core-shell latex from copolymer of styrene-butyl acrylate-methyl methacrylate and their paint properties. Pigm Resin Technol 38:159–164

    Article  CAS  Google Scholar 

  23. Borthakur LJ, Jana T, Dolui SK (2010) Preparation of core-shell latex particles by emulsion co-polymerization of styrene and butyl acrylate, and evaluation of their pigment properties in emulsion paints. J Coat Technol Res 7:765–772

    Article  CAS  Google Scholar 

  24. Rong Q, Zhu A, Zhong T (2011) Poly(styrene-n-butyl acrylate-methyl methacrylate)/silica nanocomposites by emulsion polymerization. J Appl Polym Sci 120:3654–3661

    Article  CAS  Google Scholar 

  25. Díaz-Ponce JA, Vázquez-Torres H, Martínez-Vera C (2015) Emulsion terpolymerization of St/MMA/BuA. Modeling of composition, number of particles and the influence of n-DDM on the molecular weights. Chem Eng Sci 138:41–58

    Article  Google Scholar 

  26. Díaz-Ponce JA (1990) Síntesis y caracterización de terpolímeros a base de estireno (St)-metacrilato de Metilo (MMA)-acrilato de butilo (ABu) obtenidos en emulsión. M Sc Thesis, UNAM, Mexico City

  27. Pastor-Vega JO (1990) Síntesis y caracterización de un terpolímero homogéneo en composición de estireno (St)-metacrilato de metilo (MMA)-acrilato de butilo (ABu) en emulsión. Bac Thesis, UNAM, Mexico City

  28. Nomura M, Susuki H, Tokunaga H, Fujita K (1994) Mass transfer effects in emulsion polymerization systems. I Diffusional behavior of chain transfer agents in the emulsion polymerization of styrene. J Appl Polym Sci 51:21–31

    Article  CAS  Google Scholar 

  29. Wang S, Poehlein GW, Shork FJ (1997) Miniemulsion polymerization of styrene with chain transfer agent as cosurfactant. J Polym Sci Part A-1: Polym Chem 35:398–603

    Google Scholar 

  30. Asua JM (2002) Miniemulsion polymerization. Prog Polym Sci 27:1283–1346

    Article  CAS  Google Scholar 

  31. Nomura M, Tobita H, Suzuki K (2005) Emulsion polymerization. Adv Polym Sci 175(1–128):17

    Google Scholar 

  32. Kobayashi M (1988) Characterization of styrene–methyl methacrylate–n-butyl acrylate terpolymers. I. Average dyad concentration determined by 1H–NMR. J Appl Polym Sci 35:299–309

    Article  CAS  Google Scholar 

  33. Hill AV (1910) The possible effects of the aggregation of the molecules of hemoglobin on the dissociation curves. J Physiol 40(Suppl):iv–vii

    Google Scholar 

  34. Coval ML (1970) Analysis of hill interaction coefficients and the invalidity of the kwon and Brown equation. J Biol Chem 245:6335–6336

    CAS  Google Scholar 

  35. Alfrey T, Goldfinger G (1944) Copolymerization of systems of three or more monomers. J Chem Phys 12:322

    Article  CAS  Google Scholar 

  36. Lewis FM, Walling C, Cummings W, Briggs ER, Mayo FR (1948) Copolymerization. IV Effects of temperature and solvents on monomer reactivity ratios. J Am Chem Soc 70:1519–1523

    Article  CAS  Google Scholar 

  37. Kostanski LK, Hamielec AE (1992) Influence of temperature on butyl acrylate-styrene copolymerization parameters. Polymer 33:3706–3710

    Article  CAS  Google Scholar 

  38. Grassie N, Torrance BJD, Fortune JD, Gemmell JD (1965) Reactivity ratios for the copolymerization of acrylates and methacrylates by nuclear magnetic resonance spectroscopy. Polymer 6:653–658

    Article  CAS  Google Scholar 

  39. Brandrup J, Immergut EH (eds) (1999) Polymer Handbook, fourth edn. New York, John Wiley and Sons

    Google Scholar 

  40. Soljic I, Jukic A, Janovic Z (2010) Terpolymerization kinetics of N,N- dimethylaminoethyl methacrylate/alkyl methacrylate/styrene systems. Polym Eng Sci:70:577–584

  41. Walling C, Briggs ER (1945) Copolymerization: III. Systems containing more than two Monomers. J Am Chem Soc 67:1774–1778

    Article  CAS  Google Scholar 

  42. Maxwell IA, Kurja J, van Doremaele GHJ, German AL (1992) Thermodynamics of swelling of latex particles with two monomers. Makromol Chem 193:2065–2080

    Article  CAS  Google Scholar 

  43. Schoonbrood HAS, van den Boom MAT, German AL, Hutovic J (1994) Multimonomer partitioning in latex systems with moderately water-soluble monomers. J Polym Sci, Part A: Polym Chem 32:2311–2325

    Article  CAS  Google Scholar 

  44. Araujo O, Giudici R, Saldívar E, Ray WH (2001) Modeling and experimental studies of emulsion copolymerization systems I. Experimental results. J Appl Polym Sci 79:2360–2379

    Article  CAS  Google Scholar 

  45. Barton AFM (1983) CRC handbook of solubility parameters and other cohesion parameters. CRC Press, Florida

    Google Scholar 

  46. Krongberg B, Stenius P (1984) The effect of surface polarity on the absorption of nonionic surfactants I. Thermodynamic considerations. J Colloid Interface Sci 102:410–417

    Article  Google Scholar 

  47. Lee BI, Kesler MG (1975) A generalized thermodynamic correlation based on three-parameter corresponding states. AICHE J 21:510–527

    Article  CAS  Google Scholar 

  48. Boublík T, Fried V, Hála E (1984) The vapor pressures of pure substances, second ed. Physical Science Data 17, Elsevier, Amsterdam

  49. Budavari S (ed) (1996) The Merck index. Merck, New Jersey, p. 255

    Google Scholar 

  50. Vargaftik NB, Vinogradov YK, Yargin VS (1996) Handbook of physical properties of liquids and gases. Begel House, New York

    Google Scholar 

  51. Riddik JA, Bunger WB (1986) Techniques of chemistry volume II organic solvents, third edn. John Wiley and Sons, New York

    Google Scholar 

  52. Chirico RD, Knipmeyer SE, Nguyen A, Steele WVJ (1997) Thermodynamic equilibria in xylene isomerization 4. Thermodynamics properties of ethylbenzene. J Chem Eng Data 42:772–783

    Article  CAS  Google Scholar 

  53. Steele WV, Chirico RD, Cowell AB, Knipmeyer SE, Nguyen AJ (2002) Thermodynamic properties and ideal gas enthalpies of formation of trans-methyl cinnamate, α-methyl cinnalmadehyde, methyl methacrylate, 1-nonyne, trimethylacetic acid, trimethylacetic anhydride and ethyl trimethyl acetate. J Chem Eng Data 47:700–714

    Article  CAS  Google Scholar 

  54. Steele WV, Chirico RD, Knipmeyer SE, Nguyen A, Smith NK (1996) Thermodynamic properties and ideal-gas enthalpies of formation of butyl vinyl ether, 1,2- dimethoxyethane, methyl glycolate, bicyclo [2.2.1]hept-2-ene, 5-vinylbicyclo [2.2.1.]hept-2-ene, trans-azobenzene, butyl acrylate, di-tert-butyl-ether, and hexane-1,6-diol. J Chem Eng Data 41:1285–1302

    Article  CAS  Google Scholar 

  55. Hildebrand JH, Wood SE (1933) The derivation of equations for regular solutions. J Chem Phys 1:817–822

    Article  CAS  Google Scholar 

  56. Hildebrand JH, Prausnitz JW, Scott RL (1970) Regular and related solutions. Van Nostrand Reinhold Company, New York

    Google Scholar 

  57. Kontogeorgis GM, Folas (2010) Thermodynamic models for industrial applications. Wiley & Sons, West Sussex

    Book  Google Scholar 

Download references

Acknowledgements

Dr. J. Gracia-Fadrique for commentaries about azeotropic conditions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Alejandro Díaz-Ponce.

Electronic supplementary material

ESM 1

(DOC 272 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-Ponce, J.A., Martínez-Vera, C. St-MMA-BuA terpolymerization in emulsion: II. The kinetic azeotropy and the problem of homogeneity in composition. J Polym Res 24, 44 (2017). https://doi.org/10.1007/s10965-017-1209-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1209-4

Keywords

Navigation