Skip to main content
Log in

Toughening of epoxy hybrid nanocomposites modified with silica nanoparticles and epoxidized natural rubber

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Silica nanoparticles (SN) and epoxidized natural rubber (ENR) were used as binary component fillers in toughening diglycidyl ether of bisphenol A (DGEBA) cured cycloaliphatic polyamine. For a single component filler system, the addition of ENR resulted in significantly improved fracture toughness (KIC) but reduction of glass transition temperature (Tg) and modulus of epoxy resins. On the other hand, the addition of SN resulted in a modest increase in toughness and Tg but significant improvement in modulus. Combining and balancing both fillers in hybrid ENR/SN/epoxy systems exhibited improvements in the Young’s modulus and Tg, and most importantly the KIC, which can be explained by synergistic impact from the inherent characteristics associated with each filler. The highest KIC was achieved with addition of small amounts of SN (5 wt.%) to the epoxy containing 5–7.5 wt.% ENR, where the KIC was distinctly higher than with the epoxy containing ENR alone at the same total filler content. Evidence through scanning electron microscopy (SEM) and transmission optical microscopy (TOM) revealed that cavitation of rubber particles with matrix shear yielding and particle debonding with subsequent void growth of silica nanoparticles were the main toughening mechanisms for the toughness improvements for epoxy. The fracture toughness enhancement for hybrid nanocomposites involved an increase in damage zone size in epoxy matrix due to the presence of ENR and SN, which led to dissipating more energy near the crack-tip region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. May C (1988) Epoxy resins chemistry and technology. Marcel Dekker Inc, New York

    Google Scholar 

  2. Ruamcharoen P, Umaree S, Ruamcharoen J (2011) Relationship between tensile properties and morphology of epoxy resin modified by epoxidised natural rubber. Mater Sci Eng 5:504–510

    Google Scholar 

  3. Liu H-Y, Wang G-T, Mai Y-W, Zeng Y (2011) On fracture toughness of nano-particle modified epoxy. Compos Part B- Eng 42:2170–2175

    Article  Google Scholar 

  4. Akinyede O, Mohan R, Kelkar A, Sankar J (2009) Static and fatigue behavior of epoxy/fiberglass composites hybridized with alumina nanoparticles. J Compos Mater 43:769–781

    Article  CAS  Google Scholar 

  5. Liang YL, Pearson RA (2010) The toughening mechanism in hybrid epoxy-silica-rubber nanocomposites (HESRNs). Polymer 51:4880–4890

    Article  CAS  Google Scholar 

  6. Dittanet P, Pearson RA (2012) Effect of silica nanoparticle size on toughening mechanisms of filled epoxy. Polymer 53:1890–1905

    Article  CAS  Google Scholar 

  7. Bagheri R, Pearson RA (1996) Role of particle cavitation in rubber-toughened epoxies:1. Microvoid toughening. Polymer 20:4529

    Article  Google Scholar 

  8. Dittanet P, Pearson RA (2013) Effect of bimodal particle size distributions on the toughening mechanisms in silica nanoparticle filled epoxy resin. Polymer 54:1832–1845

    Article  CAS  Google Scholar 

  9. Vijayan PP, Piontech J, Huczko A, Puglia D, Jenny JM, Thomas S (2014) Liquid rubber and silicon carbide nanofiber modified epoxy nanocomposites: volume shrinkage, cure kinetics and properties. Compos Sci Technol 102:65–73

    Article  CAS  Google Scholar 

  10. Tan SK, Ahmad S, Chia CH, Mamum A, Heim HP (2013) A comparison study of liquid natural rubber (LNR) and liquid epoxidized natural rubber (LENR) as the toughening agent for epoxy. Am J Mater Sci 3:55–61

    Google Scholar 

  11. Johnsen BB, Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S (2007) Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 48:530–541

    Article  CAS  Google Scholar 

  12. Quan D, Ivankovic A (2015) Effect of core–shell rubber (CSR) nano-particles on mechanical properties and fracture toughness of an epoxy polymer. Polymer 66:16–28

    Article  CAS  Google Scholar 

  13. Yahyaie H, Ebrahimi M, Tahami HV, Mafi ER (2013) Toughening mechanisms of rubber modified thin film epoxy resins. Prog Org Coat 76:286–292

    Article  CAS  Google Scholar 

  14. Sharma RA, Melo DD, Bhattacharya S, Chaudhari L, Swain S (2012) Effect of nano/micro silica on electrical property of unsaturated polyester resin composites. Trans Electr Electron Mater 13:31–34

    Article  Google Scholar 

  15. Blees MH, Winkelman GB, Balkenende AR, den Toonder JMJ (2000) The effect of friction on scratch adhesion testing: application to a sol-gel coating on polypropylene. Thin Solid Films 359:1–13

    Article  CAS  Google Scholar 

  16. El-Sayed S, Abel-Baset T, Elfadl AA, Hassen A (2015) Effect of nanosilica on optical, electric modulus and AC conductivity of polyvinyl alcohol/polyaniline films. Phys B Condens Matter 464:17–27

    Article  CAS  Google Scholar 

  17. Liang YL, Pearson RA (2009) Toughening mechanisms in epoxy–silica nanocomposites (ESNs). Polymer 50:4895–4905

    Article  CAS  Google Scholar 

  18. Zhang H, Tang L-C, Zhang Z, Friedrich K, Sprenger S (2008) Fracture behaviours of in situ silica nanoparticle-filled epoxy at different temperatures. Polymer 49:3816–3825

    Article  CAS  Google Scholar 

  19. Zhang H, Zhang Z, Friedrich K, Eger C (2006) Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mater 54:1833–1842

    Article  CAS  Google Scholar 

  20. Lauke B (2008) On the effect of particle size on fracture toughness of polymer composites. Compos Sci Technol 68:3365–3372

    Article  CAS  Google Scholar 

  21. Hsieh CL, Tuan WH (2007) Thermal expansion behavior of a model ceramic–metal composite. Mater Sci Eng A 460:453–458

    Article  Google Scholar 

  22. Johnsen BB, Kinloch AJ, Taylor AC (2005) Toughness of syndiotactic polystyrene/epoxy polymer blends: microstructure and toughening mechanisms. Polymer 46:7352–7369

    Article  CAS  Google Scholar 

  23. Ismail H, Shaari SM, Othman N (2011) The effect of chitosan loading on the curing characteristics, mechanical and morphological properties of chitosan-filled natural rubber (NR), epoxidised natural rubber (ENR) and styrene-butadiene rubber (SBR) compounds. Polym Test 30:784–790

    Article  CAS  Google Scholar 

  24. Noriman NZ, Ismail H, Rashid AA (2010) Characterization of styrene butadiene rubber/recycled acrylonitrile-butadiene rubber (SBR/NBRr) blends: the effects of epoxidized natural rubber (ENR-50) as a compatibilizer. Polym Test 29:200–208

    Article  CAS  Google Scholar 

  25. Chikhi N, Fellahi S, Bakar M (2002) Modification of epoxy resin using reactive liquid (ATBN) rubber. Eur Polym J 38:251–264

    Article  CAS  Google Scholar 

  26. Xu SA, Wang DGT, Mai YW (2013) Effect of hybridization of liquid rubber and nanosilica particles on the morphology, mechanical properties, and fracture toughness of epoxy composites. J Mater Sci 48:3546–3556

    Article  CAS  Google Scholar 

  27. Sprenger S, Kothmann MH, Altstaedt V (2014) Carbon fiber-reinforced composites using an epoxy resin matrix modified with reactive liquid rubber and silica nanoparticles. Compos Sci Technol 105:86–95

    Article  CAS  Google Scholar 

  28. Hertzberg RW, Vinci RP, Hertzberg JL (2012) Deformation and fracture mechanics of engineering materials. Wiley, New York

    Google Scholar 

  29. Kinloch AJ, Mohammed RD, Taylor AC (2005) The effect of silica nano-particles and rubber particles on the toughness of multiphase thermosetting epoxy polymers. Mater Sci 40:5083–5086

    Article  CAS  Google Scholar 

  30. Roberts AD (1990) Natural rubber science and technology. Oxford, UK

  31. Bacigalupo LN (2013) Fracture behavior of nano-scale rubber-modified epoxies. Dissertation, Lehigh University, USA

  32. Huang Y, Kinloch AJ (1992) Modelling of the toughening mechanisms in rubber-modified epoxy polymers. J Mater Sci 27:2753–2762

    Article  CAS  Google Scholar 

  33. Azimi HR, Pearson RA, Hertzberg RW (1992) Fatigue of hybrid epoxy composites: epoxies containing rubber and hollow glass spheres. Polym Eng Sci 36:2352–2365

    Article  Google Scholar 

  34. Bray DJ, Dittanet P, Guild FJ, Kinloch AJ, Masania K, Pearson RA, Taylor AC (2013) The modelling of the toughening of epoxy polymers via silica nanoparticles: the effects of volume fraction and particle size. Polymer 54:7022–7032

    Article  CAS  Google Scholar 

  35. Sprenger S (2013) Epoxy resins modified with elastomers and surface-modified silica nanoparticles. Polymer 54:4790–4797

    Article  CAS  Google Scholar 

  36. Sun Y, Zhang Z, Wong CP (2005) Study on mono-dispersed nano-size silica by surface modification for underfill applications. J Colloid Interface Sci 292:436–444

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported in part by the Graduate Program Scholarship from the Graduate School, Kasetsart University, the Thailand Research Fund (TRF) through Grant No. TRG5780252, the Kasetsart University Research and Development Institute (KURDI), and the Faculty of Engineering at Kasetsart University. Epoxy resins and Nanopox® were kindly supplied by Aditya Birla Chemicals Thailand (Epoxy division) and Evonik Industries, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peerapan Dittanet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leelachai, K., Kongkachuichay, P. & Dittanet, P. Toughening of epoxy hybrid nanocomposites modified with silica nanoparticles and epoxidized natural rubber. J Polym Res 24, 41 (2017). https://doi.org/10.1007/s10965-017-1202-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1202-y

Keywords

Navigation