Skip to main content
Log in

Electrically conductive polyaniline/polyimide microfiber membrane prepared via a combination of solution blowing and subsequent in situ polymerization growth

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Dodecylbenzene sulfonic acid (DBSA) doped-polyaniline (PANI) coated conductive polyimide (PI) microfiber membrane was prepared by chemical oxidation polymerization. PI nanofiber membrane was prepared by solution blowing. Fourier transform infrared spectra (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM) proved that the successful preparation of composite microfiber membrane with core-shell structures. At the same time, the PANI had an effect of protection on PI nanofiber, which was detected by thermal gravimetric analysis (TGA). The orthogonal experiments were designed to determine the optimal reaction conditions for the conductivity of PANI/PI microfiber membranes as following: ANI concentration (0.15 mol L−1), APS concentration (0.1 mol L−1) and DBSA concentration (0.3 mol L−1). The conductivity of PANI/PI microfiber membranes could arrive to 3.83 × 10−2 S cm−1. Moreover, the PANI/PI microfiber membranes had a superior hexavalent chromium (Cr (VI)) adsorption performance. The factors affecting the performance of hexavalent chromium (Cr (VI)) removal from the aqueous solutions were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen D, Miao Y-E, Liu T (2013) Electrically conductive polyaniline/polyimide nanofiber membranes prepared via a combination of electrospinning and subsequent in situ polymerization growth. ACS Appl Mater Interfaces 5(4):1206–1212

    Article  CAS  Google Scholar 

  2. Lei Y, Qian X, Shen J, An X (2013) A process of applying polypyrrole-engineered pulp fibers prepared using hydrogen peroxide as oxidant to detoxification of Cr (VI)-contaminated water. Bioresour Technol 131:134–138

    Article  CAS  Google Scholar 

  3. Yang JE, Jang I, Kim M, Baeck SH, Hwang S, Shim SE (2013) Electrochemically polymerized vine-like nanostructured polyaniline on activated carbon nanofibers for supercapacitor. Electrochim Acta 111:136–143

    Article  CAS  Google Scholar 

  4. Xinping H, Bo G, Guibao W, Jiatong W, Chun Z (2013) A new nanocomposite: carbon cloth based polyaniline for an electrochemical supercapacitor. Electrochim Acta 111:210–215

    Article  Google Scholar 

  5. Shimano JY, Macdiarmid AG (2001) Polyaniline, a dynamic block copolymer: key to attaining its intrinsic conductivity? Synth Met 123(2):251–262

    Article  CAS  Google Scholar 

  6. Han MG, Cho SK, Oh SG, Im SS (2002) Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution. Synth Met 126(1):53–60

    Article  CAS  Google Scholar 

  7. Wang N, Li GD, Yu Z, Zhang XX, Qi XL (2015) Conductive polypyrrole/viscose fiber composites. Carbohydr Polym 127:332–339

    Article  CAS  Google Scholar 

  8. Wang N, Li G, Zhang X, Qi X (2015) Chemical synthesis and characterization dodecylbenzene sulfonic acid-doped polyaniline/viscose fiber. RSC Adv 5(55):44687–44695

    Article  CAS  Google Scholar 

  9. Yao Q, Chen L, Zhang W, Liufu S, Chen X (2010) Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. ACS Nano 4(4):2445–2451

    Article  CAS  Google Scholar 

  10. Zhao Y, Tang G-S, Yu Z-Z, Qi J-S (2012) The effect of graphite oxide on the thermoelectric properties of polyaniline. Carbon 50(8):3064–3073

    Article  CAS  Google Scholar 

  11. Li J, Qian X, Wang L, An X (2010) XPS characterization and percolation behavior of polyaniline-coated conductive paper. Bioresources 5(2):712–726

    CAS  Google Scholar 

  12. Peng H, Ma G, Ying W, Wang A, Huang H, Lei Z (2012) In situ synthesis of polyaniline/sodium carboxymethyl cellulose nanorods for high-performance redox supercapacitors. J Power Sources 211:40–45

    Article  CAS  Google Scholar 

  13. Zhai G, Fan Q, Tang Y, Zhang Y, Pan D, Qin Z (2010) Conductive composite films composed of polyaniline thin layers on microporous polyacrylonitrile surfaces. Thin Solid Films 519(1):169–173

    Article  CAS  Google Scholar 

  14. Ren JY, Huang XY, Wang N (2016) Preparation of polyaniline-coated polyacrylonitrile fiber mats and their application to Cr(VI) removal. Synth Met 222(B):255–266

    Article  CAS  Google Scholar 

  15. Medeiros ES, Glenn GM, Klamczynski AP, Orts WJ, Mattoso LHC (2009) Solution blow spinning: a new method to produce micro- and nanofibers from polymer solutions. J Appl Polym Sci 113(4):2322–2330

    Article  CAS  Google Scholar 

  16. Zhang L, Kopperstad P, West M, Hedin N, Fong H (2009) Generation of polymer ultrafine fibers through solution (air-) blowing. J Appl Polym Sci 114(6):3479–3486

    Article  CAS  Google Scholar 

  17. Hasegawa M, Horie K (2001) Photophysics, photochemistry, and optical properties of polyimides. Prog Polym Sci 26(2):259–335

    Article  CAS  Google Scholar 

  18. Liaw DJ, Wang KL, Huang YC, Lee KR, Lai JY, Ha CS (2012) Advanced polyimide materials: syntheses, physical properties and applications. Prog Polym Sci 37(7):907–974

    Article  CAS  Google Scholar 

  19. Zhou Y, Hu X, Zhang M, Zhuo X (2013) Preparation and characterization of modified cellulose for adsorption of Cd (II), Hg (II), and acid Fuchsin from aqueous solutions. Ind Eng Chem Res 52(2):876–884

    Article  CAS  Google Scholar 

  20. Kumar PA, Chakraborty S (2009) Fixed-bed column study for hexavalent chromium removal and recovery by short-chain polyaniline synthesized on jute fiber. J Hazard Mater 162(2–3):1086–1098

    Article  CAS  Google Scholar 

  21. Gu H, Rapole SB, Sharma J, Huang Y, Cao D, Colorado HA, Luo Z, Haldolaarachchige N, Young DP, Walters B, Wei S, Guo Z (2012) Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal. RSC Adv 2(29):11007–11018

    Article  CAS  Google Scholar 

  22. Zheng Y, Wang W, Huang D, Wang A (2012) Kapok fiber oriented-polyaniline nanofibers for efficient Cr(VI) removal. Chem Eng J 191:154–161

    Article  CAS  Google Scholar 

  23. Mirmohseni A, Oladegaragoze A (2002) Detection and determination of CrVI in solution using polyaniline modified quartz crystal electrode. J Appl Polym Sci 85(13):2772–2780

    Article  CAS  Google Scholar 

  24. Aman T, Kazi AA, Sabri MU, Bano Q (2008) Potato peels as solid waste for the removal of heavy metal copper (II) from waste water/industrial effluent. Colloids Surf B: Biointerfaces 63(1):116–121

    Article  CAS  Google Scholar 

  25. Jiang Y, Pang H, Liao B (2009) Removal of copper (II) ions from aqueous solution by modified bagasse. J Hazard Mater 164(1):1–9

    Article  CAS  Google Scholar 

  26. Mohammadi N, Khani H, Gupta VK, Amereh E, Agarwal S (2011) Adsorption process of methyl orange dye onto mesoporous carbon material–kinetic and thermodynamic studies. J Colloid Interface Sci 362(2):457–462

    Article  CAS  Google Scholar 

  27. Das M, Sarkar D (2016) Effect of oxidizing agent on ammonia sensing of DBSA doped polyaniline nanocomposite thin film. J Mater Sci Mater Electron 27:4109–4119

    Article  CAS  Google Scholar 

  28. Kumar Y, Goto T (2016) Synthesis and characterization of PANI-DBSA/DVB composite using roll-milled PANI-DBSA complex. Polymer 86:129–137

    Article  CAS  Google Scholar 

  29. Long Y, Chen Z, Wang N, et al. (2004) Electronic transport in PANI-CSA/PANI-DBSA polyblends. Phys B Condens Matter 344:82–87

    Article  CAS  Google Scholar 

  30. Haba Y, Segal E, Narkis M, et al. (2000) Polyaniline e DBSA/polymer blends prepared via aqueous dispersions. Synth Met 110:189–193

    Article  CAS  Google Scholar 

  31. Araújo OA, De Paoli M-A (2009) Pilot plant scale preparation of dodecylbenzene sulfonic acid doped polyaniline in ethanol/water solution: control of doping, reduction of purification time and of residues. Synth Met 159:1968–1974

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Science Fund of Aviation (201329Q2001); National Natural Science Fund of China (21206123); Postdoctoral Program projects (2014 M551026, 201402011); Tianjin Municipal Applied Basic Research and Frontier Technology Research Programs (13JCQNJC02300) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Chen, Y., Ren, J. et al. Electrically conductive polyaniline/polyimide microfiber membrane prepared via a combination of solution blowing and subsequent in situ polymerization growth. J Polym Res 24, 42 (2017). https://doi.org/10.1007/s10965-017-1198-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1198-3

Keywords

Navigation