Skip to main content

Advertisement

Log in

Sol–gel transition characterization of thermosensitive hydrogels based on water mobility variation provided by low field NMR

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Sol–gel transition properties play a key role in various applications of thermosensitive hydrogels, but conventional methods for studying the sol–gel transition have some limitations. For extensive characterization of the water–polymer interaction and microstructure change during sol–gel transition, we propose a rapid and nondestructive method based on monitoring water mobility through low field NMR (LF-NMR), and this was applied to chitosan/β-glycerophosphate (CS/GP) hydrogels. The spin–spin relaxation time (T 2) that depicted water mobility was measured by LF-NMR within 90 s. The T 2 component corresponding to water protons trapped in polymer networks (T 21 ) was very sensitive to sol–gel transition. A remarkable decrease of T 21 value indicated obvious variations of water mobility when CS/GP was heated, and a turning point was observed on the T 21–time curve. The gel point associated with this turning point could be easily determined by fitting the T 21–time curves to a bilinear regression model, and the results showed good accuracy and repeatability owing to the nondestructive nature of LF-NMR. Variations in water components and microstructure of CS/GP caused by water migration after solidification were also analyzed by monitoring dynamic changes of T 2. This rapid, nondestructive method provides a powerful tool for studying the sol–gel transition of hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CS:

Chitosan

G′:

Elastic modulus

G″:

Viscous modulus

GP:

β-Glycerophosphate

HE T 2 :

Hahn decay time constant

LF-NMR:

Low field NMR

τ:

Pulse spacing

T 2 :

Spin–spin relaxation time

References

  1. Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21(21):2155–2161

    Article  CAS  Google Scholar 

  2. Supper S, Anton N, Seidel N, Riemenschnitter M, Schoch C, Vandamme T (2013) Rheological study of chitosan/polyol-phosphate systems: influence of the polyol part on the thermo-induced gelation mechanism. Langmuir 29(32):10229–10237

    Article  CAS  Google Scholar 

  3. Khodaverdi E, Tafaghodi M, Ganji F, Abnoos K, Naghizadeh H (2012) In vitro insulin release from thermosensitive chitosan hydrogel. AAPS PharmSciTech 13(2):460–466

    Article  CAS  Google Scholar 

  4. Agarwal P, Rupenthal ID (2013) Injectable implants for the sustained release of protein and peptide drugs. Drug Discov Today 18(7–8):337–349

    Article  CAS  Google Scholar 

  5. Tang Y, Zhang S, Wang M, Zhu J, Sun T, Jiang G (2014) A glucose-based diblock copolymer: synthesis, characterization and its injectable/temperature-sensitive behaviors. J Polym Res 21(4):390

    Article  Google Scholar 

  6. Liu S, Li X, Guang N, Tian L, Mao H, Ning W (2016) Novel amphiphilic temperature responsive graft copolymers PCL-g-P(MEO2MA-co-OEGMA) via a combination of ROP and ATRP: synthesis, characterization, and sol–gel transition. J Polym Res 23(7):141

    Article  Google Scholar 

  7. Fagerland J, Finne-Wistrand A (2013) Mapping the synthesis and the impact of low molecular weight PLGA-g-PEG on sol–gel properties to design hierarchical porous scaffolds. J Polym Res 21(1):337

    Article  Google Scholar 

  8. Singh RP, Kundu PP (2013) DSC and micro structural studies of methylcellulose gels in N, N dimethylformamide. J Polym Res 20(9):226

    Article  Google Scholar 

  9. Hezaveh H, Muhamad II (2013) Modification and swelling kinetic study of kappa-carrageenan-based hydrogel for controlled release study. J Taiwan Instit Chem Eng 44(2):182–191

    Article  CAS  Google Scholar 

  10. Lv Z, Chang L, Long X, Liu J, Xiang Y, Liu J, Liu J, Deng H, Deng L, Dong A (2014) Thermosensitive in situ hydrogel based on the hybrid of hyaluronic acid and modified PCL/PEG triblock copolymer. Carbohydr Polym 108:26–33

    Article  CAS  Google Scholar 

  11. Zhou Y, Fan X, Zhang W, Xue D, Kong J (2014) Stimuli-induced gel-sol transition of supramolecular hydrogels based on β-cyclodextrin polymer/ferrocene-containing triblock copolymer inclusion complexes. J Polym Res 21(2):359

    Article  Google Scholar 

  12. Li X, Wang Y, Chen J, Wang Y, Ma J, Wu G (2014) Controlled release of protein from biodegradable multi-sensitive injectable poly(ether-urethane) hydrogel. ACS Appl Mater Interfaces 6(5):3640–3647

    Article  CAS  Google Scholar 

  13. Cabana A, Aı̈t-Kadi A, Juhász J (1997) Study of the gelation process of polyethylene oxide–polypropylene oxide–polyethylene oxide copolymer (Poloxamer 407) aqueous solutions. J Colloid Interf Sci 190(2):307–312

    Article  CAS  Google Scholar 

  14. Núñez-Santiago MC, Tecante A (2007) Rheological and calorimetric study of the sol–gel transition of κ-carrageenan. Carbohydr Polym 69(4):763–773

    Article  Google Scholar 

  15. Chambon F, Winter HH (1985) Stopping of crosslinking reaction in a PDMS polymer at the gel point. Polym Bull 13(6):499–503

    Article  CAS  Google Scholar 

  16. Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30(2):367–382

    Article  CAS  Google Scholar 

  17. Saalwächter K, Gottlieb M, Liu, Oppermann W (2007) Gelation as studied by proton multiple-quantum NMR. Macromolecules 40(5):1555–1561

    Article  Google Scholar 

  18. Malmierca MA, González-Jiménez A, Mora-Barrantes I, Posadas P, Rodríguez A, Ibarra L, Nogales A, Saalwächter K, Valentín JL (2014) Characterization of network structure and chain dynamics of elastomeric ionomers by means of 1H low-field NMR. Macromolecules 47(16):5655–5667

    Article  CAS  Google Scholar 

  19. Valentín JL, López D, Hernández R, Mijangos C, Saalwächter K (2009) Structure of poly(vinyl alcohol) cryo-hydrogels as studied by proton low-field NMR spectroscopy. Macromolecules 42(1):263–272

    Article  Google Scholar 

  20. Li J, Hou GG, Chen ZX, Gehring K (2013) Effects of endoxylanases, vital wheat gluten, and gum Arabic on the rheological properties, water mobility, and baking quality of whole-wheat saltine cracker dough. J Cereal Sci 58(3):437–445

    Article  CAS  Google Scholar 

  21. Radecki M, Spevacek J, Zhigunov A, Sedlakova Z, Hanykova L (2015) Temperature-induced phase transition in hydrogels of interpenetrating networks of poly(N-isopropylacrylamide) and polyacrylamide. Eur Polym J 68:68–79

    Article  CAS  Google Scholar 

  22. Tananuwong K, Reid DS (2004) DSC and NMR relaxation studies of starch–water interactions during gelatinization. Carbohydr Polym 58(3):345–358

    Article  CAS  Google Scholar 

  23. Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94(3):630

    Article  CAS  Google Scholar 

  24. Meiboom S, Gill D (1958) Modified spin‐echo method for measuring nuclear relaxation times. Rev Sci Instrum 29(8):688–691

    Article  CAS  Google Scholar 

  25. Shioya S, Christman R, Ailion DC, Cutillo AG, Goodrich KC (1993) Nuclear magnetic resonance Hahn spin-echo decay (T2) in live rats with endotoxin lung injury. Magn Reson Med 29(4):441–445

    Article  CAS  Google Scholar 

  26. Li Y, Li X, Chen C, Zhao D, Su Z, Ma G, Yu R (2016) A rapid, non-invasive and non-destructive method for studying swelling behavior and microstructure variations of hydrogels. Carbohydr Polym 151:1251–1260

    Article  CAS  Google Scholar 

  27. Supper S, Anton N, Boisclair J, Seidel N, Riemenschnitter M, Curdy C, Vandamme T (2014) Chitosan/glucose 1-phosphate as new stable in situ forming depot system for controlled drug delivery. Eur J Pharm Biopharm 88(2):361–373

    Article  CAS  Google Scholar 

  28. Han M, Wang P, Xu X, Zhou G (2014) Low-field NMR study of heat-induced gelation of pork myofibrillar proteins and its relationship with microstructural characteristics. Food Res Int 62:1175–1182

    Article  CAS  Google Scholar 

  29. Assifaoui A, Champion D, Chiotelli E, Verel A (2006) Rheological behaviour of biscuit dough in relation to water mobility. Int J Food Sci Tech 41:124–128

    Article  CAS  Google Scholar 

  30. Jhon MS, Andrade JD (1973) Water and hydrogels. J Biomed Mater Res 7(6):509–522

    Article  CAS  Google Scholar 

  31. Shioya S, Christman R, Ailion DC, Cutillo AG, Goodrich KC, Morris AH (2000) In vivo hahn spin-echo decay (Hahn-T2) observation of regional changes in the time course of oleic acid lung injury. J Magn Reson Imaging 11(2):215–222

    Article  CAS  Google Scholar 

  32. Assifaoui A, Champion D, Chiotelli E, Verel A (2006) Characterization of water mobility in biscuit dough using a low-field H-1 NMR technique. Carbohydr Polym 64(2):197–204

    Article  CAS  Google Scholar 

  33. Ruel-Gariépy E, Chenite A, Chaput C, Guirguis S, Leroux JC (2000) Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. Int J Pharm 203(1–2):89–98

    Article  Google Scholar 

  34. Nativ O, Aronson M, Medalia O, Moldavsky T, Sabo E, Ringel I, Kravtsov V (1997) Anti-neoplastic activity of paclitaxel on experimental superficial bladder cancer: in vivo and in vitro studies. Int J Cancer 70(3):297–301

    Article  CAS  Google Scholar 

  35. Cho JY, Heuzey MC, Begin A, Carreau PJ (2005) Physical gelation of chitosan in the presence of beta-glycerophosphate: the effect of temperature. Biomacromolecules 6(6):3267–3275

    Article  CAS  Google Scholar 

  36. Manohar RS, Rao PH (2002) Interrelationship between rheological characteristics of dough and quality of biscuits; use of elastic recovery of dough to predict biscuit quality. Food Res Int 35(9):807–813

    Article  Google Scholar 

  37. Ruan R, Long Z, Chen P, Huang V, Almaer S, Taub I (1999) Pulse NMR study of glass transition in maltodextrin. J Food Sci 64(1):6–9

    Article  CAS  Google Scholar 

  38. Li X, Kong X, Wang X, Shi S, Guo G, Luo F, Zhao X, Wei Y, Qian Z (2010) Gel–sol–gel thermo-gelation behavior study of chitosan–inorganic phosphate solutions. Eur J Pharm Biopharm 75(3):388–392

    Article  CAS  Google Scholar 

  39. Lavertu M, Filion D, Buschmann MD (2008) Heat-induced transfer of protons from chitosan to glycerol phosphate produces chitosan precipitation and gelation. Biomacromolecules 9(2):640–650

    Article  CAS  Google Scholar 

  40. Li X, Li Y, Chen C, Zhao D, Wang X, Zhao L, Shi H, Ma G, Su Z (2015) Pore size analysis from low field NMR spin–spin relaxation measurements of porous microspheres. J Porous Mater 22(1):11–20

    Article  Google Scholar 

  41. Micklander E, Peshlov B, Purslow PP, Engelsen SB (2002) NMR-cooking: monitoring the changes in meat during cooking by low-field 1H-NMR. Trends Food Sci Technol 13(9–10):341–346

    Article  CAS  Google Scholar 

  42. Calucci L, Forte C, Ranucci E (2008) Water/polymer interactions in poly(amidoamine) hydrogels by H1 nuclear magnetic resonance relaxation and magnetization transfer. J Chem Phys 129(6):064511

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the National High Technology Research and Development Program of China (863 Program, Grant Nos. 2014AA021005 and 2014AA021006), the National Natural Science Foundation of China (Grant Nos. 21376248 and 21506228), the National Key Scientific Instrument and Equipment Development Project (Grant No. 2013YQ14040508), the Doctoral Fund of the Ministry of Education (Grant No. 20120181110036), the National Basic Research Program (Grant No. 2013CB733604), and the Opening Foundation of National Key Laboratory of Biochemical Engineering (Grant No. 2014KF-4) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiunan Li or Rong Yu.

Additional information

Yaqiong Li and Xiunan Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, X., Chen, C. et al. Sol–gel transition characterization of thermosensitive hydrogels based on water mobility variation provided by low field NMR. J Polym Res 24, 25 (2017). https://doi.org/10.1007/s10965-017-1185-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1185-8

Keywords

Navigation