Skip to main content

Advertisement

Log in

Mapping the synthesis and the impact of low molecular weight PLGA-g-PEG on sol–gel properties to design hierarchical porous scaffolds

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Bone morphogenetic protein 2 (BMP-2)-functionalized poly(l-lactide-co-ε-caprolactone) (PLCL) porous scaffolds have shown promising results in bone tissue regeneration studies. It is believed that even better results are achieved by hierarchical porous scaffolds and a designed sequential release of growth factors. We therefore synthesized (l-lactide-co-glycolide)-g-poly(ethylene glycol) (PLGA-g-PEG) oligomers which could be injected into PLCL porous scaffolds. They were synthesized by ring-opening polymerization and carefully characterized by nuclear magnetic resonance spectroscopy (NMR), matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), and size exclusion chromatography (SEC). The sol–gel transition temperature, pH, and functional life were determined and correlated with the molecular structure of PLGA-g-PEG. We found that low molecular weight PLGA-g-PEG was obtained and poly(l-lactide-co-glycolide-co-poly(ethylene glycol) methyl ether) (PLGA-MPEG) appeared to contribute to gelation. It was possible to design a system that formed a hydrogel within 1 min at 37 °C with a pH between 6 and 7 and with a functional life of around 1 month. These low molecular weight thermosensitive PLGA-g-PEG oligomers, which can be injected into PLCL scaffolds, appear promising for bone tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Finne A, Albertsson A-C (2004) New functionalized polyesters to achieve controlled architectures. J Polym Sci Part A Polym Chem 42:444–452. doi:10.1002/pola.10805

    Article  CAS  Google Scholar 

  2. Tyson T, Målberg S, Wåtz V et al (2011) Functional and highly porous scaffolds for biomedical applications. Macromol Biosci 11:1432–1442. doi:10.1002/mabi.201100166

    Article  CAS  Google Scholar 

  3. Idris SB, Arvidson K, Plikk P et al (2010) Polyester copolymer scaffolds enhance expression of bone markers in osteoblast-like cells. J Biomed Mater Res A 94:631–639. doi:10.1002/jbm.a.32726

    Google Scholar 

  4. Dånmark S, Finne-Wistrand A, Wendel M et al (2010) Osteogenic differentiation by rat bone marrow stromal cells on customized biodegradable polymer scaffolds. J Bioact Compat Polym 25:207–223. doi:10.1177/0883911509358812

    Article  Google Scholar 

  5. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12. doi:10.1016/S0169-409X(01)00239-3

    Article  CAS  Google Scholar 

  6. Slaughter BV, Khurshid SS, Fisher OZ et al (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329. doi:10.1002/adma.200802106

    Article  CAS  Google Scholar 

  7. Ruel-Gariépy E, Leroux J-C (2004) In situ-forming hydrogels—review of temperature-sensitive systems. Eur J Pharm Biopharm 58:409–426. doi:10.1016/j.ejpb.2004.03.019

    Article  Google Scholar 

  8. Chen G, Hoffman AS (1995) Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature 373:49–52. doi:10.1038/373049a0

    Article  CAS  Google Scholar 

  9. Malmsten M, Lindman B (1992) Self-assembly in aqueous block copolymer solutions. Macromolecules 25:5440–5445. doi:10.1021/ma00046a049

    Article  CAS  Google Scholar 

  10. Jeong B, Bae YH, Lee DS, Kim SW (1997) Biodegradable block copolymers as injectable drug-delivery systems. Nature 388:860–862

    Article  CAS  Google Scholar 

  11. Jeong B, Bae YH, Kim SW (1999) Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions. Macromolecules 32:7064–7069. doi:10.1021/ma9908999

    Article  CAS  Google Scholar 

  12. Jeong B, Wang L-Q, Gutowska A (2001) Biodegradable thermoreversible gelling PLGA-g-PEG copolymers. Chem Commun 2001:1516–1517

  13. Chung Y-M, Simmons KL, Gutowska A, Jeong B (2002) Sol-gel transition temperature of PLGA-g-PEG aqueous solutions. Biomacromolecules 3:511–516. doi:10.1021/bm0156431

    Article  CAS  Google Scholar 

  14. Jeong B, Lee KM, Gutowska A, An YH (2002) Thermogelling biodegradable copolymer aqueous solutions for injectable protein delivery and tissue engineering. Biomacromolecules 3:865–868. doi:10.1021/bm025536m

    Article  CAS  Google Scholar 

  15. Cho K, Kim C, Lee J, Park JK (1999) Synthesis and characterization of poly(ethylene glycol) grafted poly(l-lactide). Macromol Rapid Commun 20:598–601

    Article  CAS  Google Scholar 

  16. Gilding DK, Reed AM (1979) Biodegradable polymers for use in surgery—polyglycolic/poly(actic acid) homo- and copolymers: 1. Polymer (Guildf) 20:1459–1464. doi:10.1016/0032-3861(79)90009-0

    Article  CAS  Google Scholar 

  17. Jeong B, Windisch CF, Park MJ et al (2003) Phase transition of the PLGA-g-PEG copolymer aqueous solutions. J Phys Chem B 107:10032–10039. doi:10.1021/jp027339n

    Article  CAS  Google Scholar 

  18. Lin G, Cosimbescu L, Karin NJ, Tarasevich BJ (2012) Injectable and thermosensitive PLGA-g-PEG hydrogels containing hydroxyapatite: preparation, characterization and in vitro release behavior. Biomed Mater 7:024107. doi:10.1088/1748-6041/7/2/024107

    Article  Google Scholar 

  19. Dunn AS, Campbell PG, Marra KG (2001) The influence of polymer blend composition on the degradation of polymer/hydroxyapatite biomaterials. J Mater Sci Mater Med 12:673–677

    Article  CAS  Google Scholar 

  20. Dånmark S, Finne-Wistrand A, Schander K et al (2011) In vitro and in vivo degradation profile of aliphatic polyesters subjected to electron beam sterilization. Acta Biomater 7:2035–2046

    Article  Google Scholar 

  21. Zhou S, Zheng X, Yu X et al (2007) Hydrogen bonding interaction of poly(d,l-lactide)/hydroxyapatite nanocomposites. Chem Mater 19:247–253. doi:10.1021/cm0619398

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from KTH, Royal Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Finne-Wistrand.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 447 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fagerland, J., Finne-Wistrand, A. Mapping the synthesis and the impact of low molecular weight PLGA-g-PEG on sol–gel properties to design hierarchical porous scaffolds. J Polym Res 21, 337 (2014). https://doi.org/10.1007/s10965-013-0337-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0337-8

Keywords

Navigation