Skip to main content
Log in

Perturbation-correlation moving-window two-dimensional correlation spectroscopic studies on the heat treatment of poly(vinyl alcohol)/silver nitrate film

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this paper, poly(vinyl alcohol)/silver nitrate (PVA/AgNO3) films were annealed at 180 °C for 1 h to prepare highly electrically conductive poly(vinyl alcohol)/silver (PVA/Ag) nanohybrids. Ultraviolet (UV)-visible absorption spectra, X-ray diffraction (XRD) scans, and scanning electronic microscopy (SEM) were applied to investigate the structures and morphology of the PVA hybrids. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were employed to study the thermal property of PVA/AgNO3 films. Furthermore, perturbation-correlation moving-window two-dimensional (PCMW2D) correlation spectroscopy combined with temperature-dependent Fourier transform infrared (FTIR) spectroscopy was used to investigate the conversion of AgNO3 into Ag nanoparticles in PVA matrix. The results show that the chelates for AgNO3 coordinated with hydroxyl groups are primarily decomposed in the temperature regions of 39.7–72.6 °C and 182.7–199.6 °C. AgNO3 is reduced into Ag0 and the hydroxyl groups of PVA are oxidized into carbonyl groups. The PVA-AgNO3 chelates are very rapidly decomposed in the temperature region of 182.7–199.6 °C. Large amounts of Ag0 produced by the reduction of AgNO3 are aggregated into Ag nanoparticles which are homogeneously dispersed into the PVA matrix. When the temperature increases to 212.7 °C, the unhydrolyzed acetate groups in PVA chains are sharply decomposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sun Y, Xia Y (2003) Adv Mater 15:695–699

    Article  CAS  Google Scholar 

  2. Lin JC, Wang CY (1996) Mater Chem Phys 45:136–144

    Article  CAS  Google Scholar 

  3. Wang Y, Toshima N (1997) J Phys Chem B 101:5301–5306

    Article  CAS  Google Scholar 

  4. Zheng M, Gu M, Jin Y, Jin G (2000) Mater Res Bull 36:853–859

    Article  Google Scholar 

  5. EI-Mohdy HL (2013) J Polym Res 20:177–188

    Article  Google Scholar 

  6. Temgire MK, Joshi SS (2003) Radiat Phys Chem 71:1039–1044

    Article  Google Scholar 

  7. Zhang Y, Wan Y, Shi Y, Pan G, Yan H, Xu J, Guo M, Qin L, Liu Y (2016) J Polym Res 23:105–113

    Article  Google Scholar 

  8. Mbhele ZH, Sakmane MG, Van Sittert CGCE, Nedeljkovic JM, Djokovic V, Luyt AS (2003) Chem Mater 15:5019–5024

    Article  CAS  Google Scholar 

  9. Strawhecker KE, Manias E (2000) Chem Mater 12:2943–2949

    Article  CAS  Google Scholar 

  10. Zhang Y, Zhu PC, Edgren D (2010) J Polym Res 17:725–730

    Article  CAS  Google Scholar 

  11. Yu YH, Lin CY, Yeh JM, Lin WH (2003) Polymer 44:3553–3560

    Article  CAS  Google Scholar 

  12. Radheshkumar C, Munstedt H (2005) Mater Lett 59:1949–1953

    Article  CAS  Google Scholar 

  13. Zeng R, Rong MZ, Zhang M, Liang H, Zeng H (2002) Appl Surf Sci 187:239–247

    Article  CAS  Google Scholar 

  14. Wang R, Wang Z, Lin S, Deng C, Li F, Chen Z, He H (2015) RSC Adv 5:40141–40147

    Article  CAS  Google Scholar 

  15. Compton JM, Thompson DW, Kranbuehl DE, Ohl S, Gain O, David L, Espuche E (2006) Polymer 47:5303–5313

    Article  CAS  Google Scholar 

  16. Thompson DT, Thompson DW, Southward RE (2002) Chem Mater 14:30–37

    Article  CAS  Google Scholar 

  17. Wu Z, Wu D, Qi S, Zhang T, Jin R (2005) Thin Solid Films 493:179–184

    Article  CAS  Google Scholar 

  18. Gautam A, Tripathy P, Ram S (2006) J Mater Sci 41:3007–3016

    Article  CAS  Google Scholar 

  19. Clemenson S, Leonard D, Sage D, David L, Espuche E (2008) J Polym Sci 46:2062–2071

    Article  CAS  Google Scholar 

  20. Gautam A, Ram S (2010) Mater Chem Phys 119:266–271

    Article  CAS  Google Scholar 

  21. Liang S, Yang J, Zhang X, Bai Y (2011) J Appl Polym Sci 122:813–818

    Article  CAS  Google Scholar 

  22. Khanna PK, Singh N, Charan S, Subbarao V, Gokhale R, Mulik UP (2005) Mater Chem Phys 93:117–121

    Article  CAS  Google Scholar 

  23. Clemenson S, David L, Espuche E (2007) J Polym Sci 45:2657–2672

    Article  CAS  Google Scholar 

  24. Savitzky A, Golay MGE (1964) Anal Chem 36:1627–1639

    Article  CAS  Google Scholar 

  25. Zhou T, Zhang A, Zhao C, Liang H, Wu Z, Xia J (2007) Macromolecules 40:9009–9017

    Article  CAS  Google Scholar 

  26. Yang CC, Lee YJ (2009) Thin Solid Films 517:4735–4740

    Article  CAS  Google Scholar 

  27. Sadjadi MAS, Sadeghi B, Meskinfam M, Zare K, Azizian J (2008) Phys E 40:3183–3186

    Article  CAS  Google Scholar 

  28. Zidan HM (1999) Polym Test 18:449–461

    Article  CAS  Google Scholar 

  29. Holland BJ, Hay JN (2002) Polymer 43:2207–2211

    Article  CAS  Google Scholar 

  30. Mitic Z, Cakic M, Nikolic GM, Nikolic R, Nikolic GS, Pavlovic R, Santaniello E (2011) Carbohydr Res 346:434–441

    Article  CAS  Google Scholar 

  31. Nikolic GS, Cakic M, Mitic Z, Ilic L (2008) J Coord Chem 34:322–328

    Article  CAS  Google Scholar 

  32. Mansur HM, Sadahira M, Souza AN, Mansur AAP (2008) Mat Sci Eng C-Mater 28:539–548

    Article  CAS  Google Scholar 

  33. Yen CC, Chang TC, Kakinoki H (1990) J Appl Polym Sci 40:53–66

    Article  CAS  Google Scholar 

  34. Du H, Zhou T, Zhang J, Liu X (2010) Anal Bioanal Chem 397:3127–3132

    Article  CAS  Google Scholar 

  35. Xue B, Deng J, Zhang J (2016) RSC Adv 6:7653–7660

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihua Deng or Junhua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, B., Zhang, J., Ji, L. et al. Perturbation-correlation moving-window two-dimensional correlation spectroscopic studies on the heat treatment of poly(vinyl alcohol)/silver nitrate film. J Polym Res 23, 252 (2016). https://doi.org/10.1007/s10965-016-1149-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1149-4

Keywords

Navigation